irrlicht/tests/testVector2d.cpp

222 lines
6.8 KiB
C++
Raw Normal View History

// Copyright (C) 2008-2012 Colin MacDonald
// No rights reserved: this software is in the public domain.
#include "testUtils.h"
using namespace irr;
using namespace core;
template<class T>
static bool compareVectors(const core::vector2d<T> & compare,
const core::vector2d<T> & with)
{
if (!compare.equals(with))
{
logTestString("\nERROR: vector2d %.16f, %.16f != vector2d %.16f, %.16f\n",
(f64)compare.X, (f64)compare.Y, (f64)with.X, (f64)with.Y);
assert_log(compare == with);
return false;
}
return true;
}
template <class T>
static bool doTests()
{
#define COMPARE_VECTORS(compare, with)\
if(!compareVectors(compare, with)) return false;
vector2d<T> vec(5, 5);
vector2d<T> otherVec(10, 20);
if(!equals(vec.getDistanceFrom(otherVec), (T)15.8113883))
{
logTestString("vector2d::getDistanceFrom() failed\n");
assert_log(0);
return false;
}
otherVec = vector2d<T>(1,2);
otherVec[0] = vec[0];
otherVec[1] = vec[1];
if(!vec.equals(otherVec))
{
logTestString("vector2d::operator[] failed\n");
assert_log(0);
return false;
}
vec.rotateBy(45); // Test implicit (0, 0) center
COMPARE_VECTORS(vec, vector2d<T>(0, (T)7.0710678118654755));
vec.normalize();
COMPARE_VECTORS(vec, vector2d<T>(0, (T)1.0000000461060017));
vec.set(10, 10);
vector2d<T> center(5, 5);
vec.rotateBy(-5, center);
// -5 means rotate clockwise slightly, so expect the X to increase
// slightly and the Y to decrease slightly.
COMPARE_VECTORS(vec, vector2d<T>((T)10.416752204197017, (T)9.5451947767204359));
vec.set(5, 5);
vec.normalize();
COMPARE_VECTORS(vec, vector2d<T>((T)0.7071068137884140, (T)0.7071068137884140));
vec.set(5, 5);
otherVec.set(10, 20);
logTestString("vector2d interpolation\n");
vector2d<T> interpolated;
(void)interpolated.interpolate(vec, otherVec, 0.f);
COMPARE_VECTORS(interpolated, otherVec); // 0.f means all the second vector
(void)interpolated.interpolate(vec, otherVec, 0.25f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)8.75, (T)16.25));
(void)interpolated.interpolate(vec, otherVec, 0.75f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)6.25, (T)8.75));
(void)interpolated.interpolate(vec, otherVec, 1.f);
COMPARE_VECTORS(interpolated, vec); // 1.f means all the first vector
interpolated = vec.getInterpolated(otherVec, 0.f);
COMPARE_VECTORS(interpolated, otherVec); // 0.f means all the second vector
interpolated = vec.getInterpolated(otherVec, 0.25f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)8.75, (T)16.25));
interpolated = vec.getInterpolated(otherVec, 0.75f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)6.25, (T)8.75));
interpolated = vec.getInterpolated(otherVec, 1.f);
COMPARE_VECTORS(interpolated, vec); // 1.f means all the first vector
logTestString("vector2d quadratic interpolation\n");
vector2d<T> thirdVec(20, 10);
interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.f);
COMPARE_VECTORS(interpolated, vec); // 0.f means all the 1st vector
interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.25f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)7.8125, (T)10.9375));
interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.5f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)11.25, (T)13.75));
interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.75f);
COMPARE_VECTORS(interpolated, vector2d<T>((T)15.3125, (T)13.4375));
interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 1.f);
COMPARE_VECTORS(interpolated, thirdVec); // 1.f means all the 3rd vector
// check if getAngle returns values matching those of the double precision version
logTestString("vector2d getAngle\n");
for (s32 i=0; i<200; ++i)
{
core::vector2d<T> tmp((T)-1, (T)(-100+i));
core::vector2d<f64> ref(-1, -100+i);
if (!equals(tmp.getAngle(),ref.getAngle(), 0.0003))
{
logTestString("\nERROR: angle %.16f != angle %.16f\n",
tmp.getAngle(), ref.getAngle());
return false;
}
f32 val = atan2f((float)tmp.Y, (float)tmp.X)*core::RADTODEG;
if (val<=0)
val=-val;
else
val=360-val;
if (!equals((f32)tmp.getAngle(),val, 0.5f))
{
logTestString("\nERROR: angle %.16f != atan2 %.16f\n vector %.16f, %.16f\n",
tmp.getAngle(), val, tmp.X, tmp.Y);
return false;
}
tmp = core::vector2d<T>((T)1, (T)(-100+i));
ref = core::vector2d<f64>(1, -100+i);
if (!equals(tmp.getAngle(),ref.getAngle(), 0.0003))
{
logTestString("\nERROR: angle %.16f != angle %.16f\n",
tmp.getAngle(), ref.getAngle());
return false;
}
val = atan2f((f32)tmp.Y, (f32)tmp.X)*core::RADTODEG;
if (val<=0)
val=-val;
else
val=360-val;
if (!equals((f32)tmp.getAngle(),val, 0.5f))
{
logTestString("\nERROR: angle %.16f != atan2 %.16f\n vector %.16f, %.16f\n",
tmp.getAngle(), val, tmp.X, tmp.Y);
return false;
}
}
core::vector2d<T> tmp(0, -100);
core::vector2d<f64> ref(0, -100);
if (!equals(tmp.getAngle(),ref.getAngle()))
{
logTestString("\nERROR: angle %.16f != angle %.16f\n",
tmp.getAngle(), ref.getAngle());
return false;
}
tmp = core::vector2d<T>(0, 100);
ref = core::vector2d<f64>(0, 100);
if (!equals(tmp.getAngle(),ref.getAngle()))
{
logTestString("\nERROR: angle %.16f != angle %.16f\n",
tmp.getAngle(), ref.getAngle());
return false;
}
tmp = core::vector2d<T>(static_cast<T>(-1.53080559e-16), static_cast<T>(2.49999523));
ref = core::vector2d<f64>(-1.53080559e-16, 2.49999523);
if (!equals(tmp.getAngle(),ref.getAngle()))
{
logTestString("\nERROR: angle %.16f != angle %.16f\n",
tmp.getAngle(), ref.getAngle());
return false;
}
core::vector2d<T> zeroZero(0, 0);
core::vector2d<T> oneOne(1, 1);
// Check if comparing (0.0, 0.0) with (1.0, 1.0) returns false.
if(zeroZero == oneOne)
{
logTestString("\nERROR: vector2d %.16f, %.16f == vector2d %.16f, %.16f\n",
(f64)zeroZero.X, (f64)zeroZero.Y, (f64)oneOne.X, (f64)oneOne.Y);
return false;
}
return true;
}
/** Test the functionality of vector2d<T>, particularly methods that
involve calculations done using different precision than <T>.
Note that all reference vector2d<T>s are creating using double precision
values cast to (T), as we need to test <f64>. */
bool testVector2d(void)
{
bool f32Success = doTests<f32>();
if(f32Success)
logTestString("vector2df tests passed\n\n");
else
logTestString("\n*** vector2df tests failed ***\n\n");
bool f64Success = doTests<f64>();
if(f64Success)
logTestString("vector2d<f64> tests passed\n\n");
else
logTestString("\n*** vector2d<f64> tests failed ***\n\n");
Changes in 1.6 TA - PixelBlend16 and PixelBlend16_simd are working for the new rules. - bugfix. CLightSceneNode didn't correctly update it's attributes Lighting Linear Attenuation. = 1.f / radius The Example loadirr files set the lightscene radius to 1000.f but stays on the previous default attentuation with the older radius 100 -> 1.f / 100 so the examples looks golden-brown. Now the radius is correctly!! set to the attenuation of 1.f/1000.f because the file doesn't have special attenuation. and now it looks more yellow. can anybody show me a correct screenshot for this file;-)? Niko? Or is this behavior the default lighting?. then it would be a fixed constant linear attenuation of 0.01f;-). Please clearify For now i didn't fixed it I encountered this behavior because i ( burning video ) used the original radius for calculations and so i've found that radius != 1.f / linearAttenuation but in the LightSceneNode this formula was used.. confused;-) - vector template and equals tests as working with the test suits i cleaned the template behavior (mixed types are used in the templates) and added all missing special math function with their coressponding type I also set the equal test for s32 to behave like the f32 routine. The function equals always implements a weak test. that means a tolerance MUST always be used if you use the equal function. default is 1. you can set it to zero a==b-> equals ( a, b, 0 ) but do it explicit like you have to for floating compare. This is important when irrlicht is going to use special hardware math acceleration on a per function base, like sse2, or the other way round fixpoint. - VideoDriver drawPixel The HW renderes are using the alpha components for blending. The Software Renderes and image loaders are using CImage::setPixel copy. so setPixel is engaged to either blends or copy the pixel default: false - Burningvideo added RenderMaterial EMT_SPHERE_MAP pushed burningsvideo to 0.43 added RenderMaterial EMT_REFLECTION_2_LAYER pushed burningsvideo to 0.44 set EMT_TRANSPARENT_ALPHA_CHANNEL_REF to use AlphaRef 0.5 like Direct3D One Note: in OpenGL there is know difference between sphere_map and reflection layer both using GL_TEXTURE_GEN_MODE GL_SPHERE_MAP, whereas in d3d one time using camera_normal on sphere and reflection on refletcion_layer. The visual difference is that on sphere map the "image is not moving" when you rotate the viewer. For Buring i took the opengl visual. always moving - rename quake3 SEntity to IEntity to be confom with IShader even IShader and IEntity are none pure virtual interfaces like most irrlicht objects git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@2207 dfc29bdd-3216-0410-991c-e03cc46cb475
2009-02-10 07:08:23 -08:00
bool s32Success = doTests<s32>();
if(s32Success)
logTestString("vector2di tests passed\n\n");
else
logTestString("\n*** vector2di tests failed ***\n\n");
return f32Success && f64Success && s32Success;
}