irrlicht/include/ISceneCollisionManager.h

157 lines
7.0 KiB
C
Raw Normal View History

// Copyright (C) 2002-2008 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __I_SCENE_COLLISION_MANAGER_H_INCLUDED__
#define __I_SCENE_COLLISION_MANAGER_H_INCLUDED__
#include "IReferenceCounted.h"
#include "vector3d.h"
#include "triangle3d.h"
#include "position2d.h"
#include "line3d.h"
namespace irr
{
namespace scene
{
class ISceneNode;
class ICameraSceneNode;
class ITriangleSelector;
//! The Scene Collision Manager provides methods for performing collision tests and picking on scene nodes.
class ISceneCollisionManager : public virtual IReferenceCounted
{
public:
//! Destructor
virtual ~ISceneCollisionManager() {}
//! Finds the collision point of a line and lots of triangles, if there is one.
/** \param ray: Line with witch collisions are tested.
\param selector: TriangleSelector containing the triangles. It
can be created for example using
ISceneManager::createTriangleSelector() or
ISceneManager::createTriangleOctTreeSelector().
\param outCollisionPoint: If a collision is detected, this will
contain the position of the nearest collision.
\param outTriangle: If a collision is detected, this will
contain the triangle with which the ray collided.
\return True if a collision was detected and false if not. */
virtual bool getCollisionPoint(const core::line3d<f32>& ray,
ITriangleSelector* selector, core::vector3df& outCollisionPoint,
core::triangle3df& outTriangle) = 0;
//! Collides a moving ellipsoid with a 3d world with gravity and returns the resulting new position of the ellipsoid.
/** This can be used for moving a character in a 3d world: The
character will slide at walls and is able to walk up stairs.
The method used how to calculate the collision result position
is based on the paper "Improved Collision detection and
Response" by Kasper Fauerby.
\param selector: TriangleSelector containing the triangles of
the world. It can be created for example using
ISceneManager::createTriangleSelector() or
ISceneManager::createTriangleOctTreeSelector().
\param ellipsoidPosition: Position of the ellipsoid.
\param ellipsoidRadius: Radius of the ellipsoid.
\param ellipsoidDirectionAndSpeed: Direction and speed of the
movement of the ellipsoid.
\param triout: Optional parameter where the last triangle
causing a collision is stored, if there is a collision.
\param outFalling: Is set to true if the ellipsoid is falling
down, caused by gravity.
\param slidingSpeed: DOCUMENTATION NEEDED.
\param gravityDirectionAndSpeed: Direction and force of gravity.
\return New position of the ellipsoid. */
virtual core::vector3df getCollisionResultPosition(
ITriangleSelector* selector,
const core::vector3df &ellipsoidPosition,
const core::vector3df& ellipsoidRadius,
const core::vector3df& ellipsoidDirectionAndSpeed,
core::triangle3df& triout,
bool& outFalling,
f32 slidingSpeed = 0.0005f,
const core::vector3df& gravityDirectionAndSpeed
= core::vector3df(0.0f, 0.0f, 0.0f)) = 0;
//! Returns a 3d ray which would go through the 2d screen coodinates.
/** \param pos: Screen coordinates in pixels.
\param camera: Camera from which the ray starts. If null, the
active camera is used.
\return Ray starting from the position of the camera and ending
at a length of the far value of the camera at a position which
would be behind the 2d screen coodinates. */
virtual core::line3d<f32> getRayFromScreenCoordinates(
core::position2d<s32> pos, ICameraSceneNode* camera = 0) = 0;
//! Calculates 2d screen position from a 3d position.
/** \param pos: 3D position in world space to be transformed
into 2d.
\param camera: Camera to be used. If null, the currently active
camera is used.
\return 2d screen coordinates which a object in the 3d world
would have if it would be rendered to the screen. If the 3d
position is behind the camera, it is set to (-10000,-10000). In
most cases you can ignore this fact, because if you use this
method for drawing a decorator over a 3d object, it will be
clipped by the screen borders. */
virtual core::position2d<s32> getScreenCoordinatesFrom3DPosition(
core::vector3df pos, ICameraSceneNode* camera=0) = 0;
//! Gets the scene node, which is currently visible under the given screencoordinates, viewed from the currently active camera.
/** The collision tests are done using a bounding box for each
scene node.
\param pos: Position in pixel screen coordinates, under which
the returned scene node will be.
\param idBitMask: Only scene nodes with an id with bits set
like in this mask will be tested. If the BitMask is 0, this
feature is disabled.
\param bNoDebugObjects: Doesn't take debug objects into account
when true. These are scene nodes with IsDebugObject() = true.
\return Visible scene node under screen coordinates with
matching bits in its id. If there is no scene node under this
position, 0 is returned. */
virtual ISceneNode* getSceneNodeFromScreenCoordinatesBB(core::position2d<s32> pos,
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
//! Get the nearest scene node which collides with a 3d ray and whose id matches a bitmask.
/** The collision tests are done using a bounding box for each
scene node.
\param ray: Line with witch collisions are tested.
\param idBitMask: Only scene nodes with an id with bits set
like in this mask will be tested. If the BitMask is 0, this
feature is disabled.
\param bNoDebugObjects: Doesn't take debug objects into account
when true. These are scene nodes with IsDebugObject() = true.
\return Scene node nearest to ray.start, which collides with
the ray and matches the idBitMask, if the mask is not null. If
no scene node is found, 0 is returned. */
virtual ISceneNode* getSceneNodeFromRayBB(core::line3d<f32> ray,
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
//! Get the scene node, which the overgiven camera is looking at and whose id matches the bitmask.
/** A ray is simply casted from the position of the camera to
the view target position, and all scene nodes are tested
against this ray. The collision tests are done using a bounding
box for each scene node.
\param camera: Camera from which the ray is casted.
\param idBitMask: Only scene nodes with an id with bits set
like in this mask will be tested. If the BitMask is 0, this
feature is disabled.
\param bNoDebugObjects: Doesn't take debug objects into account
when true. These are scene nodes with IsDebugObject() = true.
\return Scene node nearest to the camera, which collides with
the ray and matches the idBitMask, if the mask is not null. If
no scene node is found, 0 is returned. */
virtual ISceneNode* getSceneNodeFromCameraBB(ICameraSceneNode* camera,
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
};
} // end namespace scene
} // end namespace irr
#endif