irrlicht/source/Irrlicht/CSoftwareDriver2.cpp

1920 lines
50 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2007 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CSoftwareDriver2.h"
#include "IrrCompileConfig.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
#include "SoftwareDriver2_helper.h"
#include "CSoftwareTexture2.h"
#include "CSoftware2MaterialRenderer.h"
#include "S3DVertex.h"
#include "S4DVertex.h"
namespace irr
{
namespace video
{
//! constructor
CSoftwareDriver2::CSoftwareDriver2(const core::dimension2d<s32>& windowSize, bool fullscreen, io::IFileSystem* io, video::IImagePresenter* presenter)
: CNullDriver(io, windowSize), BackBuffer(0), Presenter(presenter),
RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0),
DepthBuffer(0), CurrentOut ( 12 * 2, 128 ), Temp ( 12 * 2, 128 )
{
#ifdef _DEBUG
setDebugName("CSoftwareDriver2");
#endif
Texture[0] = 0;
Texture[1] = 0;
Texmap[0].Texture = 0;
Texmap[1].Texture = 0;
// create backbuffer
BackBuffer = new CImage(ECF_SOFTWARE2, windowSize);
BackBuffer->fill(SColor(0));
// create z buffer
DepthBuffer = irr::video::createDepthBuffer(BackBuffer->getDimension());
// create triangle renderers
irr::memset32 ( BurningShader, 0, sizeof ( BurningShader ) );
//BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer);
//BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer);
BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(DepthBuffer);
BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(DepthBuffer );
BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(DepthBuffer );
//BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP] = createTriangleRendererTextureLightMap2_M1(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(DepthBuffer);
BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2();
BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2 ( DepthBuffer );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(DepthBuffer );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ( DepthBuffer );
BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend( DepthBuffer );
// add the same renderer for all solid types
CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID( this);
CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR( this);
CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this );
//!TODO: addMaterialRenderer depends on pushing order....
addMaterialRenderer ( smr ); // EMT_SOLID
addMaterialRenderer ( smr ); // EMT_SOLID_2_LAYER,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP,
addMaterialRenderer ( tmr ); // EMT_LIGHTMAP_ADD,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M4,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M4,
addMaterialRenderer ( smr ); // EMT_DETAIL_MAP,
addMaterialRenderer ( umr ); // EMT_SPHERE_MAP,
addMaterialRenderer ( smr ); // EMT_REFLECTION_2_LAYER,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( smr ); // EMT_TRANSPARENT_REFLECTION_2_LAYER,
addMaterialRenderer ( umr ); // EMT_NORMAL_MAP_SOLID,
addMaterialRenderer ( umr ); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( umr ); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( umr ); // EMT_PARALLAX_MAP_SOLID,
addMaterialRenderer ( umr ); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( umr ); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( tmr ); // EMT_ONETEXTURE_BLEND
smr->drop ();
tmr->drop ();
umr->drop ();
// select render target
setRenderTarget(BackBuffer);
Global_AmbientLight.set ( 0.f, 0.f, 0.f, 0.f );
// select the right renderer
setCurrentShader();
}
//! destructor
CSoftwareDriver2::~CSoftwareDriver2()
{
// delete Backbuffer
BackBuffer->drop();
// delete triangle renderers
for (s32 i=0; i<ETR2_COUNT; ++i)
if (BurningShader[i])
BurningShader[i]->drop();
// delete zbuffer
if (DepthBuffer)
DepthBuffer->drop();
// delete current texture
if ( Texture[0] )
Texture[0]->drop();
if ( Texture[1] )
Texture[1]->drop();
if (RenderTargetTexture)
RenderTargetTexture->drop();
if (RenderTargetSurface)
RenderTargetSurface->drop();
}
//! void selects the right triangle renderer based on the render states.
void CSoftwareDriver2::setCurrentShader()
{
EBurningFFShader shader = ETR_TEXTURE_GOURAUD;
bool zMaterialTest = true;
switch ( Material.org.MaterialType )
{
case EMT_ONETEXTURE_BLEND:
shader = ETR_TEXTURE_BLEND;
zMaterialTest = false;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
case EMT_TRANSPARENT_ALPHA_CHANNEL:
if ( Material.org.ZBuffer )
{
shader = ETR_TEXTURE_GOURAUD_ALPHA;
}
else
{
shader = ETR_TEXTURE_GOURAUD_ALPHA_NOZ;
}
zMaterialTest = false;
break;
case EMT_TRANSPARENT_ADD_COLOR:
if ( Material.org.ZBuffer )
{
shader = ETR_TEXTURE_GOURAUD_ADD;
}
else
{
shader = ETR_TEXTURE_GOURAUD_ADD_NO_Z;
}
zMaterialTest = false;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
break;
case EMT_LIGHTMAP:
case EMT_LIGHTMAP_LIGHTING:
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP;
break;
case EMT_LIGHTMAP_M2:
case EMT_LIGHTMAP_LIGHTING_M2:
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2;
break;
case EMT_LIGHTMAP_LIGHTING_M4:
if ( Material.org.Textures[1] )
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_M4:
if ( Material.org.Textures[1] )
shader = ETR_TEXTURE_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_ADD:
if ( Material.org.Textures[1] )
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD;
break;
case EMT_DETAIL_MAP:
shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP;
break;
default:
break;
}
if ( zMaterialTest && !Material.org.ZBuffer && !Material.org.ZWriteEnable)
{
shader = ETR_TEXTURE_GOURAUD_NOZ;
}
if ( 0 == Material.org.Textures[0] )
{
shader = ETR_GOURAUD;
}
if ( Material.org.Wireframe )
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
// switchToTriangleRenderer
CurrentShader = BurningShader[shader];
if ( CurrentShader )
{
CurrentShader->setZCompareFunc ( Material.org.ZBuffer );
switch ( shader )
{
case ETR_TEXTURE_GOURAUD_ALPHA:
case ETR_TEXTURE_GOURAUD_ALPHA_NOZ:
CurrentShader->setParam ( 0, Material.org.MaterialTypeParam );
break;
case EMT_ONETEXTURE_BLEND:
{
E_BLEND_FACTOR srcFact,dstFact;
E_MODULATE_FUNC modulate;
unpack_texureBlendFunc ( srcFact, dstFact, modulate, Material.org.MaterialTypeParam );
CurrentShader->setParam ( 0, Material.org.MaterialTypeParam );
}
break;
default:
break;
}
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
}
}
//! queries the features of the driver, returns true if feature is available
bool CSoftwareDriver2::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
switch (feature)
{
#ifdef SOFTWARE_DRIVER_2_BILINEAR
case EVDF_BILINEAR_FILTER:
return true;
#endif
#ifdef SOFTWARE_DRIVER_2_MIPMAPPING
case EVDF_MIP_MAP:
return true;
#endif
case EVDF_RENDER_TO_TARGET:
case EVDF_MULTITEXTURE:
case EVDF_HARDWARE_TL:
return true;
default:
return false;
}
}
//! sets transformation
void CSoftwareDriver2::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Transformation[state].m = mat;
Transformation[state].isIdentity = mat.isIdentity();
switch ( state )
{
case ETS_VIEW:
Transformation[ETS_VIEW_PROJECTION].m.setbyproduct_nocheck (
Transformation[ETS_PROJECTION].m,
Transformation[ETS_VIEW].m
);
break;
case ETS_WORLD:
if ( Transformation[state].isIdentity )
{
Transformation[ETS_CURRENT] = Transformation[ETS_VIEW_PROJECTION];
}
else
{
Transformation[ETS_CURRENT].m.setbyproduct_nocheck (
Transformation[ETS_VIEW_PROJECTION].m,
Transformation[ETS_WORLD].m
);
}
Transformation[ETS_CURRENT].isIdentity = 0;
#ifdef SOFTWARE_DRIVER_2_LIGHTING
if ( Material.org.Lighting )
{
if ( Transformation[state].isIdentity )
{
Transformation[ETS_WORLD_VIEW] = Transformation[ETS_VIEW];
}
else
{
Transformation[ETS_WORLD_VIEW].m.setbyproduct_nocheck (
Transformation[ETS_VIEW].m,
Transformation[ETS_WORLD].m
);
}
core::matrix4 m2 ( Transformation[ETS_WORLD_VIEW].m );
m2.makeInverse ();
m2.getTransposed ( Transformation[ETS_WORLD_VIEW_INVERSE_TRANSPOSED].m );
}
#endif
break;
default:
break;
}
}
//! sets the current Texture
bool CSoftwareDriver2::setTexture(u32 stage, video::ITexture* texture)
{
if (texture && texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
if (Texture[stage])
Texture[stage]->drop();
Texture[stage] = texture;
if (Texture[stage])
Texture[stage]->grab();
if (Texture[stage])
Texmap[stage].Texture = (video::CSoftwareTexture2*) Texture[stage];
setCurrentShader();
return true;
}
//! sets a material
void CSoftwareDriver2::setMaterial(const SMaterial& material)
{
Material.org = material;
Material.AmbientColor.setA8R8G8B8 ( Material.org.AmbientColor.color );
Material.DiffuseColor.setA8R8G8B8 ( Material.org.DiffuseColor.color );
Material.EmissiveColor.setA8R8G8B8 ( Material.org.EmissiveColor.color );
Material.SpecularColor.setA8R8G8B8 ( Material.org.SpecularColor.color );
Material.SpecularEnabled = Material.org.Shininess != 0.f;
if (Material.SpecularEnabled)
Material.org.NormalizeNormals = true;
for (u32 i = 0; i < 2; ++i)
{
setTexture( i, Material.org.Textures[i] );
setTransform((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i),
material.getTextureMatrix(i));
}
}
//! clears the zbuffer
bool CSoftwareDriver2::beginScene(bool backBuffer, bool zBuffer, SColor color)
{
CNullDriver::beginScene(backBuffer, zBuffer, color);
if (backBuffer)
BackBuffer->fill( color );
if (DepthBuffer && zBuffer)
DepthBuffer->clear();
return true;
}
//! presents the rendered scene on the screen, returns false if failed
bool CSoftwareDriver2::endScene( s32 windowId, core::rect<s32>* sourceRect )
{
CNullDriver::endScene();
Presenter->present(BackBuffer, windowId, sourceRect );
return true;
}
//! sets a render target
bool CSoftwareDriver2::setRenderTarget(video::ITexture* texture, bool clearBackBuffer,
bool clearZBuffer, SColor color)
{
if (texture && texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
if (RenderTargetTexture)
RenderTargetTexture->drop();
RenderTargetTexture = texture;
if (RenderTargetTexture)
{
RenderTargetTexture->grab();
setRenderTarget(((CSoftwareTexture2*)RenderTargetTexture)->getTexture());
}
else
{
setRenderTarget(BackBuffer);
}
if (RenderTargetSurface && (clearBackBuffer || clearZBuffer))
{
if (clearZBuffer)
DepthBuffer->clear();
if (clearBackBuffer)
((video::CImage*)RenderTargetSurface)->fill( color );
}
return true;
}
//! sets a render target
void CSoftwareDriver2::setRenderTarget(video::CImage* image)
{
if (RenderTargetSurface)
RenderTargetSurface->drop();
RenderTargetSurface = image;
RenderTargetSize.Width = 0;
RenderTargetSize.Height = 0;
if (RenderTargetSurface)
{
RenderTargetSurface->grab();
RenderTargetSize = RenderTargetSurface->getDimension();
}
setViewPort(core::rect<s32>(0,0,RenderTargetSize.Width,RenderTargetSize.Height));
if (DepthBuffer)
DepthBuffer->setSize(RenderTargetSize);
}
//! sets a viewport
void CSoftwareDriver2::setViewPort(const core::rect<s32>& area)
{
ViewPort = area;
core::rect<s32> rendert(0,0,RenderTargetSize.Width,RenderTargetSize.Height);
ViewPort.clipAgainst(rendert);
Transformation [ ETS_CLIPSCALE ].m.buildNDCToDCMatrix ( ViewPort, 1 );
if (CurrentShader)
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
}
/*
generic plane clipping in homogenous coordinates
special case ndc frustum <-w,w>,<-w,w>,<-w,w>
can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w
*/
const sVec4 CSoftwareDriver2::NDCPlane[6] =
{
sVec4( 0.f, 0.f, -1.f, -1.f ), // near
sVec4( 0.f, 0.f, 1.f, -1.f ), // far
sVec4( 1.f, 0.f, 0.f, -1.f ), // left
sVec4( -1.f, 0.f, 0.f, -1.f ), // right
sVec4( 0.f, 1.f, 0.f, -1.f ), // bottom
sVec4( 0.f, -1.f, 0.f, -1.f ) // top
};
/*
test a vertex if it's inside the standard frustum
this is the generic one..
f32 dotPlane;
for ( u32 i = 0; i!= 6; ++i )
{
dotPlane = v->Pos.dotProduct ( NDCPlane[i] );
setbit ( flag, dotPlane <= 0.f, 1 << i );
}
// this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w>
setbits ( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 );
setbits ( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 );
setbits ( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 );
setbits ( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 );
setbits ( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 );
setbits ( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 );
*/
#ifdef _MSC_VER
REALINLINE u32 CSoftwareDriver2::clipToFrustumTest ( const s4DVertex * v ) const
{
f32 test[6];
u32 flag;
const f32 w = - v->Pos.w;
// a conditional move is needed....FCOMI ( but we don't have it )
// so let the fpu calculate and write it back.
// cpu makes the compare, interleaving
test[0] = v->Pos.z + w;
test[1] = -v->Pos.z + w;
test[2] = v->Pos.x + w;
test[3] = -v->Pos.x + w;
test[4] = v->Pos.y + w;
test[5] = -v->Pos.y + w;
flag = (IR ( test[0] ) ) >> 31;
flag |= (IR ( test[1] ) & 0x80000000 ) >> 30;
flag |= (IR ( test[2] ) & 0x80000000 ) >> 29;
flag |= (IR ( test[3] ) & 0x80000000 ) >> 28;
flag |= (IR ( test[4] ) & 0x80000000 ) >> 27;
flag |= (IR ( test[5] ) & 0x80000000 ) >> 26;
/*
flag = F32_LOWER_EQUAL_0 ( test[0] );
flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1;
flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2;
flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3;
flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4;
flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5;
*/
return flag;
}
#else
REALINLINE u32 CSoftwareDriver2::clipToFrustumTest ( const s4DVertex * v ) const
{
u32 flag = 0;
for ( u32 i = 0; i!= 6; ++i )
{
core::setbit ( flag, v->Pos.dotProduct ( NDCPlane[i] ) <= 0.f, 1 << i );
}
return flag;
}
#endif // _MSC_VER
u32 CSoftwareDriver2::clipToHyperPlane ( s4DVertex * dest, const s4DVertex * source, u32 inCount, const sVec4 &plane )
{
u32 outCount = 0;
s4DVertex * out = dest;
const s4DVertex * a;
const s4DVertex * b = source;
f32 bDotPlane;
bDotPlane = b->Pos.dotProduct ( plane );
for( u32 i = 1; i < inCount + 1; ++i)
{
const s32 condition = i - inCount;
const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1;
a = &source[ index ];
// current point inside
if ( a->Pos.dotProduct ( plane ) <= 0.f )
{
// last point outside
if ( F32_GREATER_0 ( bDotPlane ) )
{
// intersect line segment with plane
out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) );
out += 2;
outCount += 1;
}
// copy current to out
//*out = *a;
irr::memcpy32_small ( out, a, SIZEOF_SVERTEX * 2 );
b = out;
out += 2;
outCount += 1;
}
else
{
// current point outside
if ( F32_LOWER_EQUAL_0 ( bDotPlane ) )
{
// previous was inside
// intersect line segment with plane
out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) );
out += 2;
outCount += 1;
}
// pointer
b = a;
}
bDotPlane = b->Pos.dotProduct ( plane );
}
return outCount;
}
u32 CSoftwareDriver2::clipToFrustum ( s4DVertex *v0, s4DVertex * v1, const u32 vIn )
{
u32 vOut = vIn;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[0] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[1] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[2] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[3] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[4] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[5] );
return vOut;
}
/*!
Part I:
apply Clip Scale matrix
From Normalized Device Coordiante ( NDC ) Space to Device Coordinate Space ( DC )
Part II:
Project homogeneous vector
homogeneous to non-homogenous coordinates ( dividebyW )
Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A )
Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w )
replace w/w by 1/w
*/
inline void CSoftwareDriver2::ndc_2_dc_and_project ( s4DVertex *dest,s4DVertex *source, u32 vIn ) const
{
u32 g;
for ( g = 0; g != vIn; g += 2 )
{
if ( (dest[g].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED )
continue;
dest[g].flag = source[g].flag | VERTEX4D_PROJECTED;
const f32 w = source[g].Pos.w;
const f32 iw = core::reciprocal ( w );
// to device coordinates
dest[g].Pos.x = iw * ( source[g].Pos.x * Transformation [ ETS_CLIPSCALE ].m[ 0] + w * Transformation [ ETS_CLIPSCALE ].m[12] );
dest[g].Pos.y = iw * ( source[g].Pos.y * Transformation [ ETS_CLIPSCALE ].m[ 5] + w * Transformation [ ETS_CLIPSCALE ].m[13] );
#ifndef SOFTWARE_DRIVER_2_USE_WBUFFER
dest[g].Pos.z = iw * source[g].Pos.z;
#endif
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[0] = source[g].Color[0] * iw;
#else
dest[g].Color[0] = source[g].Color[0];
#endif
#endif
dest[g].Pos.w = iw;
}
}
inline void CSoftwareDriver2::ndc_2_dc_and_project2 ( const s4DVertex **v, const u32 size ) const
{
u32 g;
for ( g = 0; g != size; g += 1 )
{
s4DVertex * a = (s4DVertex*) v[g];
if ( (a[1].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED )
continue;
a[1].flag = a->flag | VERTEX4D_PROJECTED;
// project homogenous vertex, store 1/w
const f32 w = a->Pos.w;
const f32 iw = core::reciprocal ( w );
// to device coordinates
a[1].Pos.x = iw * ( a->Pos.x * Transformation [ ETS_CLIPSCALE ].m[ 0] + w * Transformation [ ETS_CLIPSCALE ].m[12] );
a[1].Pos.y = iw * ( a->Pos.y * Transformation [ ETS_CLIPSCALE ].m[ 5] + w * Transformation [ ETS_CLIPSCALE ].m[13] );
#ifndef SOFTWARE_DRIVER_2_USE_WBUFFER
a[1].Pos.z = a->Pos.z * iw;
#endif
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
a[1].Color[0] = a->Color[0] * iw;
#else
a[1].Color[0] = a->Color[0];
#endif
#endif
a[1].Pos.w = iw;
}
}
/*!
crossproduct in projected 2D -> screen area triangle
*/
inline f32 CSoftwareDriver2::screenarea ( const s4DVertex *v ) const
{
return ( ( v[3].Pos.x - v[1].Pos.x ) * ( v[5].Pos.y - v[1].Pos.y ) ) -
( ( v[3].Pos.y - v[1].Pos.y ) * ( v[5].Pos.x - v[1].Pos.x ) );
}
/*!
*/
inline f32 CSoftwareDriver2::texelarea ( const s4DVertex *v, int tex ) const
{
f32 x0,y0, x1,y1, z;
x0 = v[2].Tex[tex].x - v[0].Tex[tex].x;
y0 = v[2].Tex[tex].y - v[0].Tex[tex].y;
x1 = v[4].Tex[tex].x - v[0].Tex[tex].x;
y1 = v[4].Tex[tex].y - v[0].Tex[tex].y;
z = x0*y1 - x1*y0;
const core::dimension2d<s32> &d = Texmap[tex].Texture->getMaxSize();
z *= d.Height;
z *= d.Width;
return z;
}
/*!
crossproduct in projected 2D
*/
inline f32 CSoftwareDriver2::screenarea2 ( const s4DVertex **v ) const
{
return ( (( v[1] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) * ( (v[2] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) ) -
( (( v[1] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) * ( (v[2] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) );
}
/*!
*/
inline f32 CSoftwareDriver2::texelarea2 ( const s4DVertex **v, s32 tex ) const
{
f32 z;
z = (v[1]->Tex[tex].x - v[0]->Tex[tex].x ) *
(v[2]->Tex[tex].y - v[0]->Tex[tex].y )
- (v[2]->Tex[tex].x - v[0]->Tex[tex].x ) *
(v[1]->Tex[tex].y - v[0]->Tex[tex].y )
;
const core::dimension2d<s32> &d = Texmap[tex].Texture->getMaxSize();
z *= d.Height;
z *= d.Width;
return z;
}
/*!
*/
inline void CSoftwareDriver2::select_polygon_mipmap ( s4DVertex *v, u32 vIn, s32 tex )
{
f32 f[2];
const core::dimension2d<s32>& dim = Texmap[tex].Texture->getSize();
f[0] = (f32) dim.Width;
f[1] = (f32) dim.Height;
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
for ( u32 g = 0; g != vIn; g += 2 )
{
(v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * ( v + g + 1 )->Pos.w * f[0];
(v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * ( v + g + 1 )->Pos.w * f[1];
}
#else
for ( u32 g = 0; g != vIn; g += 2 )
{
(v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * f[0];
(v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * f[1];
}
#endif
}
inline void CSoftwareDriver2::select_polygon_mipmap2 ( s4DVertex **v, s32 tex ) const
{
f32 f[2];
const core::dimension2d<s32>& dim = Texmap[tex].Texture->getSize();
f[0] = (f32) dim.Width;
f[1] = (f32) dim.Height;
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
(v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * ( v[0] + 1 )->Pos.w * f[0];
(v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * ( v[0] + 1 )->Pos.w * f[1];
(v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * ( v[1] + 1 )->Pos.w * f[0];
(v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * ( v[1] + 1 )->Pos.w * f[1];
(v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * ( v[2] + 1 )->Pos.w * f[0];
(v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * ( v[2] + 1 )->Pos.w * f[1];
#else
(v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * f[0];
(v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * f[1];
(v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * f[0];
(v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * f[1];
(v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * f[0];
(v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * f[1];
#endif
}
// Vertex Cache
const SVSize CSoftwareDriver2::vSize[] =
{
{ VERTEX4D_FORMAT_0, sizeof(S3DVertex),1 },
{ VERTEX4D_FORMAT_1, sizeof(S3DVertex2TCoords),2 },
{ VERTEX4D_FORMAT_2, sizeof(S3DVertexTangents),2 }
};
/*!
fill a cache line with transformed, light and clipp test triangles
*/
void CSoftwareDriver2::VertexCache_fill(const u32 sourceIndex,
const u32 destIndex)
{
u8 * source;
s4DVertex *dest;
source = (u8*) VertexCache.vertices + ( sourceIndex * vSize[VertexCache.vType].Pitch );
// it's a look ahead so we never hit it..
// but give priority...
//VertexCache.info[ destIndex ].hit = hitCount;
// store info
VertexCache.info[ destIndex ].index = sourceIndex;
VertexCache.info[ destIndex ].hit = 0;
// destination Vertex
dest = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( destIndex << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
// transform Model * World * Camera * Projection * NDCSpace matrix
Transformation [ ETS_CURRENT].m.transformVect ( &dest->Pos.x, ((S3DVertex*) source )->Pos );
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
// light Vertex
#ifdef SOFTWARE_DRIVER_2_LIGHTING
lightVertex ( dest, ((S3DVertex*) source ) );
#else
dest->Color[0].setA8R8G8B8 ( ((S3DVertex*) source )->Color.color );
#endif
#endif
// transfer texture coordinates
if ( Transformation [ ETS_TEXTURE_0 ].isIdentity )
{
// only look on first transform
irr::memcpy32_small ( &dest->Tex[0],
&((S3DVertex*) source )->TCoords,
vSize[VertexCache.vType].TexSize * ( sizeof ( f32 ) * 2 )
);
}
else
{
/*
Generate texture coordinates as linear functions so that:
u = Ux*x + Uy*y + Uz*z + Uw
v = Vx*x + Vy*y + Vz*z + Vw
The matrix M for this case is:
Ux Vx 0 0
Uy Vy 0 0
Uz Vz 0 0
Uw Vw 0 0
*/
const core::vector2d<f32> *src = &((S3DVertex*) source )->TCoords;
u32 t;
for ( t = 0; t != vSize[VertexCache.vType].TexSize; ++t )
{
const core::matrix4& M = Transformation [ ETS_TEXTURE_0 + t ].m;
if ( Material.org.TextureWrap[0]==ETC_REPEAT )
{
dest->Tex[t].x = M[0] * src[t].X + M[4] * src[t].Y + M[8];
dest->Tex[t].y = M[1] * src[t].X + M[5] * src[t].Y + M[9];
}
else
{
f32 tx1, ty1;
tx1 = M[0] * src[t].X + M[4] * src[t].Y + M[8];
ty1 = M[1] * src[t].X + M[5] * src[t].Y + M[9];
dest->Tex[t].x = tx1 <= 0.f ? 0.f : tx1 >= 1.f ? 1.f : tx1;
dest->Tex[t].y = ty1 <= 0.f ? 0.f : ty1 >= 1.f ? 1.f : ty1;
//dest->Tex[t].x = core::clamp ( M[0] * src[t].X + M[4] * src[t].Y + M[8], 0.f, 1.f );
//dest->Tex[t].y = core::clamp ( M[1] * src[t].X + M[5] * src[t].Y + M[9], 0.f, 1.f );
}
}
}
dest[0].flag = dest[1].flag = vSize[VertexCache.vType].Format;
// test vertex
dest[0].flag |= clipToFrustumTest ( dest);
// to DC Space, project homogenous vertex
if ( (dest[0].flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE )
{
ndc_2_dc_and_project2 ( (const s4DVertex**) &dest, 1 );
}
//return dest;
}
//
REALINLINE s4DVertex * CSoftwareDriver2::VertexCache_getVertex ( const u32 sourceIndex )
{
for ( s32 i = 0; i < VERTEXCACHE_ELEMENT; ++i )
{
if ( VertexCache.info[ i ].index == sourceIndex )
{
return (s4DVertex *) ( (u8*) VertexCache.mem.data + ( i << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
}
}
return 0;
}
/*
Cache based on linear walk indices
fill blockwise on the next 16(Cache_Size) unique vertices in indexlist
merge the next 16 vertices with the current
*/
REALINLINE void CSoftwareDriver2::VertexCache_get ( s4DVertex ** face )
{
SCacheInfo info[VERTEXCACHE_ELEMENT];
// next primitive must be complete in cache
if ( VertexCache.indicesIndex - VertexCache.indicesRun < 3 &&
VertexCache.indicesIndex < VertexCache.indexCount
)
{
// rewind to start of primitive
VertexCache.indicesIndex = VertexCache.indicesRun;
irr::memset32 ( info, VERTEXCACHE_MISS, sizeof ( info ) );
// get the next unique vertices cache line
u32 fillIndex = 0;
u32 dIndex;
u32 i;
while ( VertexCache.indicesIndex < VertexCache.indexCount &&
fillIndex < VERTEXCACHE_ELEMENT
)
{
u32 sourceIndex = VertexCache.indices [ VertexCache.indicesIndex++ ];
// if not exist, push back
s32 exist = 0;
for ( dIndex = 0; dIndex < fillIndex; ++dIndex )
{
if ( info[ dIndex ].index == sourceIndex )
{
exist = 1;
break;
}
}
if ( 0 == exist )
{
info[fillIndex++].index = sourceIndex;
}
}
// clear marks
for ( i = 0; i!= VERTEXCACHE_ELEMENT; ++i )
{
VertexCache.info[i].hit = 0;
}
// mark all exisiting
for ( i = 0; i!= fillIndex; ++i )
{
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( VertexCache.info[ dIndex ].index == info[i].index )
{
info[i].hit = dIndex;
VertexCache.info[ dIndex ].hit = 1;
break;
}
}
}
// fill new
for ( i = 0; i!= fillIndex; ++i )
{
if ( info[i].hit != VERTEXCACHE_MISS )
continue;
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( 0 == VertexCache.info[dIndex].hit )
{
VertexCache_fill ( info[i].index, dIndex );
VertexCache.info[dIndex].hit += 1;
info[i].hit = dIndex;
break;
}
}
}
}
const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun );
face[0] = VertexCache_getVertex ( VertexCache.indices[ i0 ] );
face[1] = VertexCache_getVertex ( VertexCache.indices[ VertexCache.indicesRun + 1] );
face[2] = VertexCache_getVertex ( VertexCache.indices[ VertexCache.indicesRun + 2] );
VertexCache.indicesRun += VertexCache.primitivePitch;
}
REALINLINE void CSoftwareDriver2::VertexCache_get2 ( s4DVertex ** face )
{
const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun );
VertexCache_fill ( VertexCache.indices[ i0 ], 0 );
VertexCache_fill ( VertexCache.indices[ VertexCache.indicesRun + 1], 1 );
VertexCache_fill ( VertexCache.indices[ VertexCache.indicesRun + 2], 2 );
VertexCache.indicesRun += VertexCache.primitivePitch;
face[0] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
face[1] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
face[2] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) );
}
void CSoftwareDriver2::VertexCache_reset ( const void* vertices, u32 vertexCount,
const u16* indices, u32 primitiveCount,
E_VERTEX_TYPE vType,scene::E_PRIMITIVE_TYPE pType )
{
VertexCache.vertices = vertices;
VertexCache.vertexCount = vertexCount;
VertexCache.indices = indices;
VertexCache.indicesIndex = 0;
VertexCache.indicesRun = 0;
VertexCache.vType = vType;
VertexCache.pType = pType;
switch ( VertexCache.pType )
{
case scene::EPT_TRIANGLES:
VertexCache.indexCount = primitiveCount + primitiveCount + primitiveCount;
VertexCache.primitivePitch = 3;
break;
case scene::EPT_TRIANGLE_FAN:
VertexCache.indexCount = primitiveCount + 2;
VertexCache.primitivePitch = 1;
break;
}
irr::memset32 ( VertexCache.info, VERTEXCACHE_MISS, sizeof ( VertexCache.info ) );
}
//! draws a vertex primitive list
void CSoftwareDriver2::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const u16* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType);
if ( 0 == CurrentShader )
return;
VertexCache_reset ( vertices, vertexCount, indexList, primitiveCount, vType, pType );
const s4DVertex * face[3];
f32 dc_area;
s32 lodLevel;
u32 i;
u32 g;
for ( i = 0; i < (u32) primitiveCount; ++i )
{
VertexCache_get ( (s4DVertex**) face );
// if fully outside or outside on same side
if ( ( (face[0]->flag | face[1]->flag | face[2]->flag) & VERTEX4D_CLIPMASK )
!= VERTEX4D_INSIDE
)
continue;
// if fully inside
if ( ( face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE )
{
dc_area = screenarea2 ( face );
if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0 ( dc_area ) )
{
continue;
}
dc_area = core::reciprocal ( dc_area );
// select mipmap
for ( g = 0; g != 2; ++g )
{
if ( 0 == Texmap[g].Texture )
{
CurrentShader->setTexture(g, 0, 0);
continue;
}
lodLevel = s32_log2_f32 ( texelarea2 ( face, g ) * dc_area );
CurrentShader->setTexture(g, Texmap[g].Texture, lodLevel);
select_polygon_mipmap2 ( (s4DVertex**) face, g );
}
// rasterize
CurrentShader->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 );
continue;
}
// else if not complete inside clipping necessary
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[0], SIZEOF_SVERTEX * 2 );
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[1], SIZEOF_SVERTEX * 2 );
irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[2], SIZEOF_SVERTEX * 2 );
u32 flag = CurrentOut.data->flag & VERTEX4D_FORMAT_MASK;
for ( g = 0; g != CurrentOut.ElementSize; ++g )
{
CurrentOut.data[g].flag = flag;
Temp.data[g].flag = flag;
}
u32 vOut;
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 );
/*
if ( vOut < 3 )
{
char buf[256];
struct SCheck
{
u32 flag;
const char * name;
};
SCheck check[5];
check[0].flag = face[0]->flag;
check[0].name = "face0";
check[1].flag = face[1]->flag;
check[1].name = "face1";
check[2].flag = face[2]->flag;
check[2].name = "face2";
check[3].flag = (face[0]->flag & face[1]->flag & face[2]->flag);
check[3].name = "AND ";
check[4].flag = (face[0]->flag | face[1]->flag | face[2]->flag);
check[4].name = "OR ";
for ( s32 h = 0; h!= 5; ++h )
{
sprintf ( buf, "%s: %d %d %d %d %d %d",
check[h].name,
( check[h].flag & 1 ),
( check[h].flag & 2 ) >> 1,
( check[h].flag & 4 ) >> 2,
( check[h].flag & 8 ) >> 3,
( check[h].flag & 16 ) >> 4,
( check[h].flag & 32 ) >> 5
);
os::Printer::print ( buf );
}
sprintf ( buf, "Vout: %d\n", vOut );
os::Printer::print ( buf );
int hold = 1;
}
*/
if ( vOut < 3 )
continue;
vOut <<= 1;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
/*
// if not complete inside clipping necessary
if ( ( test & VERTEX4D_INSIDE ) != VERTEX4D_INSIDE )
{
u32 v[2] = { PointerAsValue ( Temp ) , PointerAsValue ( CurrentOut ) };
for ( g = 0; g != 6; ++g )
{
vOut = clipToHyperPlane ( (s4DVertex*) v[0], (s4DVertex*) v[1], vOut, NDCPlane[g] );
if ( vOut < 3 )
break;
v[0] ^= v[1];
v[1] ^= v[0];
v[0] ^= v[1];
}
if ( vOut < 3 )
continue;
}
*/
// check 2d backface culling on first
dc_area = screenarea ( CurrentOut.data );
if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0 ( dc_area ) )
continue;
// select mipmap
for ( g = 0; g != 2; ++g )
{
if ( 0 == Texmap[g].Texture )
{
CurrentShader->setTexture(g, 0, 0);
continue;
}
lodLevel = s32_log2_f32 ( texelarea ( CurrentOut.data, g ) / dc_area );
CurrentShader->setTexture(g, Texmap[g].Texture, lodLevel);
select_polygon_mipmap ( CurrentOut.data, vOut, g );
}
// re-tesselate ( triangle-fan, 0-1-2,0-2-3.. )
for ( g = 0; g <= vOut - 6; g += 2 )
{
// rasterize
CurrentShader->drawTriangle ( CurrentOut.data + 0 + 1,
CurrentOut.data + g + 3,
CurrentOut.data + g + 5
);
}
}
// dump statistics
/*
char buf [64];
sprintf ( buf,"VCount:%d PCount:%d CacheMiss: %d",
vertexCount, primitiveCount,
VertexCache.CacheMiss
);
os::Printer::print ( buf );
*/
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CSoftwareDriver2::setAmbientLight(const SColorf& color)
{
Global_AmbientLight.setColorf ( color );
}
//! adds a dynamic light
void CSoftwareDriver2::addDynamicLight(const SLight& dl)
{
if ( Light.size () >= getMaximalDynamicLightAmount () )
return;
SInternalLight l;
l.org = dl;
// light in eye space
Transformation[ETS_VIEW].m.transformVect ( &l.posEyeSpace.x, l.org.Position );
l.constantAttenuation = l.org.Attenuation.X;
l.linearAttenuation = l.org.Attenuation.Y;
l.quadraticAttenuation = l.org.Attenuation.Z;
l.AmbientColor.setColorf ( l.org.AmbientColor );
l.DiffuseColor.setColorf ( l.org.DiffuseColor );
l.SpecularColor.setColorf ( l.org.SpecularColor );
switch ( dl.Type )
{
case video::ELT_DIRECTIONAL:
{
l.posEyeSpace.normalize_xyz ();
} break;
}
Light.push_back ( l );
CNullDriver::addDynamicLight( l.org );
}
//! deletes all dynamic lights there are
void CSoftwareDriver2::deleteAllDynamicLights()
{
Light.set_used ( 0 );
CNullDriver::deleteAllDynamicLights();
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CSoftwareDriver2::getMaximalDynamicLightAmount() const
{
return 8;
}
#ifdef SOFTWARE_DRIVER_2_LIGHTING
/*!
*/
void CSoftwareDriver2::lightVertex ( s4DVertex *dest, const S3DVertex *source )
{
// apply lighting model
if ( false == Material.org.Lighting )
{
// should use the DiffuseColor but using pre-lit vertex color
dest->Color[0].setA8R8G8B8 ( source->Color.color );
return;
}
if ( Lights.size () == 0 )
{
dest->Color[0] = Material.EmissiveColor;
return;
}
// eyespace
/*
core::matrix4 modelview = Transformation[ETS_WORLD].m * Transformation[ETS_VIEW].m;
core::matrix4 m2 ( modelview );
m2.makeInverse ();
core::matrix4 modelviewinversetransposed ( m2.getTransposed() );
*/
sVec4 vertexEyeSpace;
sVec4 normalEyeSpace;
sVec4 vertexEyeSpaceUnit;
// vertex in eye space
Transformation[ETS_WORLD_VIEW].m.transformVect ( &vertexEyeSpace.x, source->Pos );
vertexEyeSpace.project_xyz ();
vertexEyeSpaceUnit = vertexEyeSpace;
vertexEyeSpaceUnit.normalize_xyz();
// vertex normal in eye-space
//modelviewinversetransposed.transformVect ( &normalEyeSpace.x, source->Normal );
Transformation[ETS_WORLD_VIEW_INVERSE_TRANSPOSED].m.rotateVect ( &normalEyeSpace.x, source->Normal );
if ( Material.org.NormalizeNormals )
{
normalEyeSpace.normalize_xyz();
}
sVec4 ambient;
sVec4 diffuse;
sVec4 specular;
// the universe started in darkness..
ambient.set ( 0.f, 0.f, 0.f, 0.f );
diffuse.set ( 0.f, 0.f, 0.f, 0.f );
specular.set ( 0.f, 0.f, 0.f, 0.f );
f32 attenuation = 1.f;
u32 i;
for ( i = 0; i!= Light.size (); ++i )
{
const SInternalLight &light = Light[i];
sVec4 vp; // unit vector vertex to light
sVec4 lightHalf; // blinn-phong reflection
switch ( light.org.Type )
{
case video::ELT_POINT:
{
// surface to light
vp.x = light.posEyeSpace.x - vertexEyeSpace.x;
vp.y = light.posEyeSpace.y - vertexEyeSpace.y;
vp.z = light.posEyeSpace.z - vertexEyeSpace.z;
// irrlicht attenuation model
#if 0
const f32 d = vp.get_inverse_length_xyz();
vp.x *= d;
vp.y *= d;
vp.z *= d;
attenuation = light.org.Radius * d;
#else
const f32 d = vp.get_length_xyz();
attenuation = core::reciprocal (light.constantAttenuation +
light.linearAttenuation * d +
light.quadraticAttenuation * d * d
);
// normalize surface to light
vp.normalize_xyz();
#endif
lightHalf.x = vp.x - vertexEyeSpaceUnit.x;
lightHalf.y = vp.y - vertexEyeSpaceUnit.y;
lightHalf.z = vp.z - vertexEyeSpaceUnit.z;
lightHalf.normalize_xyz();
} break;
case video::ELT_DIRECTIONAL:
{
attenuation = 1.f;
vp = light.posEyeSpace;
// half angle = lightvector + eye vector ( 0, 0, 1 )
lightHalf.x = vp.x;
lightHalf.y = vp.y;
lightHalf.z = vp.z - 1.f;
lightHalf.normalize_xyz();
} break;
}
// build diffuse reflection
//angle between normal and light vector
f32 dotVP = core::max_ ( 0.f, normalEyeSpace.dot_xyz ( vp ) );
f32 dotHV = core::max_ ( 0.f, normalEyeSpace.dot_xyz ( lightHalf ) );
f32 pf;
if ( dotVP == 0.0 )
{
pf = 0.f;
}
else
{
pf = (f32)pow(dotHV, Material.org.Shininess );
}
// accumulate ambient
ambient += light.AmbientColor * attenuation;
diffuse += light.DiffuseColor * ( dotVP * attenuation );
specular += light.SpecularColor * ( pf * attenuation );
}
sVec4 dColor;
dColor = Global_AmbientLight;
dColor += Material.EmissiveColor;
dColor += ambient * Material.AmbientColor;
dColor += diffuse * Material.DiffuseColor;
dColor += specular * Material.SpecularColor;
dColor.saturate();
dest->Color[0] = dColor;
}
#endif
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CSoftwareDriver2::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
if (useAlphaChannelOfTexture)
((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha(
BackBuffer, destPos, sourceRect, color, clipRect);
else
((CSoftwareTexture2*)texture)->getImage()->copyTo(
BackBuffer, destPos, sourceRect, clipRect);
}
}
//! Draws a 2d line.
void CSoftwareDriver2::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
((CImage*)BackBuffer)->drawLine(start, end, color );
}
//! draw an 2d rectangle
void CSoftwareDriver2::draw2DRectangle(SColor color, const core::rect<s32>& pos,
const core::rect<s32>* clip)
{
if (clip)
{
core::rect<s32> p(pos);
p.clipAgainst(*clip);
if(!p.isValid())
return;
BackBuffer->drawRectangle(p, color);
}
else
{
if(!pos.isValid())
return;
BackBuffer->drawRectangle(pos, color);
}
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void CSoftwareDriver2::OnResize(const core::dimension2d<s32>& size)
{
// make sure width and height are multiples of 2
core::dimension2d<s32> realSize(size);
if (realSize.Width % 2)
realSize.Width += 1;
if (realSize.Height % 2)
realSize.Height += 1;
if (ScreenSize != realSize)
{
if (ViewPort.getWidth() == ScreenSize.Width &&
ViewPort.getHeight() == ScreenSize.Height)
{
ViewPort = core::rect<s32>(core::position2d<s32>(0,0), realSize);
}
ScreenSize = realSize;
bool resetRT = (RenderTargetSurface == BackBuffer);
BackBuffer->drop();
BackBuffer = new CImage(ECF_SOFTWARE2, realSize);
if (resetRT)
setRenderTarget(BackBuffer);
}
}
//! returns the current render target size
core::dimension2d<s32> CSoftwareDriver2::getCurrentRenderTargetSize()
{
return RenderTargetSize;
}
//!Draws an 2d rectangle with a gradient.
void CSoftwareDriver2::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
const core::dimension2d<s32> renderTargetSize ( ViewPort.getSize() );
const s32 xPlus = -(renderTargetSize.Width>>1);
const f32 xFact = 1.0f / (renderTargetSize.Width>>1);
const s32 yPlus = renderTargetSize.Height-(renderTargetSize.Height>>1);
const f32 yFact = 1.0f / (renderTargetSize.Height>>1);
// fill VertexCache direct
s4DVertex *v;
VertexCache.vertexCount = 4;
VertexCache.info[0].index = 0;
VertexCache.info[1].index = 1;
VertexCache.info[2].index = 2;
VertexCache.info[3].index = 3;
v = &VertexCache.mem.data [ 0 ];
v[0].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f );
v[0].Color[0].setA8R8G8B8 ( colorLeftUp.color );
v[2].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus- pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f );
v[2].Color[0].setA8R8G8B8 ( colorRightUp.color );
v[4].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f ,1.f );
v[4].Color[0].setA8R8G8B8 ( colorRightDown.color );
v[6].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f, 1.f );
v[6].Color[0].setA8R8G8B8 ( colorLeftDown.color );
s32 i;
u32 g;
for ( i = 0; i!= 8; i += 2 )
{
v[i + 0].flag = clipToFrustumTest ( v + i );
v[i + 1].flag = 0;
if ( (v[i].flag & VERTEX4D_INSIDE ) == VERTEX4D_INSIDE )
{
ndc_2_dc_and_project ( v + i + 1, v + i, 2 );
}
}
IBurningShader * render;
render = BurningShader [ ETR_GOURAUD_ALPHA_NOZ ];
render->setRenderTarget(RenderTargetSurface, ViewPort);
static const s16 indexList[6] = {0,1,2,0,2,3};
s4DVertex * face[3];
for ( i = 0; i!= 6; i += 3 )
{
face[0] = VertexCache_getVertex ( indexList [ i + 0 ] );
face[1] = VertexCache_getVertex ( indexList [ i + 1 ] );
face[2] = VertexCache_getVertex ( indexList [ i + 2 ] );
// test clipping
u32 test = face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_INSIDE;
if ( test == VERTEX4D_INSIDE )
{
render->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 );
continue;
}
// Todo: all vertices are clipped in 2d..
// is this true ?
u32 vOut = 6;
memcpy ( CurrentOut.data + 0, face[0], sizeof ( s4DVertex ) * 2 );
memcpy ( CurrentOut.data + 2, face[1], sizeof ( s4DVertex ) * 2 );
memcpy ( CurrentOut.data + 4, face[2], sizeof ( s4DVertex ) * 2 );
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 );
if ( vOut < 3 )
continue;
vOut <<= 1;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
// re-tesselate ( triangle-fan, 0-1-2,0-2-3.. )
for ( g = 0; g <= vOut - 6; g += 2 )
{
// rasterize
render->drawTriangle ( CurrentOut.data + 1, &CurrentOut.data[g + 3], &CurrentOut.data[g + 5] );
}
}
#else
draw2DRectangle ( colorLeftUp, position, clip );
#endif
}
//! Draws a 3d line.
void CSoftwareDriver2::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
Transformation [ ETS_CURRENT].m.transformVect ( &CurrentOut.data[0].Pos.x, start );
Transformation [ ETS_CURRENT].m.transformVect ( &CurrentOut.data[2].Pos.x, end );
u32 g;
u32 vOut;
// no clipping flags
for ( g = 0; g != CurrentOut.ElementSize; ++g )
{
CurrentOut.data[g].flag = 0;
Temp.data[g].flag = 0;
}
// vertices count per line
vOut = clipToFrustum ( CurrentOut.data, Temp.data, 2 );
if ( vOut < 2 )
return;
vOut <<= 1;
IBurningShader * line;
line = BurningShader [ ETR_TEXTURE_GOURAUD_WIRE ];
line->setRenderTarget(RenderTargetSurface, ViewPort);
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut );
// unproject vertex color
#ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
for ( g = 0; g != vOut; g+= 2 )
{
CurrentOut.data[ g + 1].Color[0].setA8R8G8B8 ( color.color );
}
#endif
for ( g = 0; g <= vOut - 4; g += 2 )
{
// rasterize
line->drawLine ( CurrentOut.data + 1, CurrentOut.data + g + 3 );
}
}
//! \return Returns the name of the video driver. Example: In case of the DirectX8
//! driver, it would return "Direct3D8.1".
const wchar_t* CSoftwareDriver2::getName() const
{
#ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL
return L"burnings video 0.38b";
#elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST )
return L"burnings video 0.38uf";
#elif defined ( BURNINGVIDEO_RENDERER_FAST )
return L"burnings video 0.38f";
#else
return L"burnings video 0.38";
#endif
}
//! Returns type of video driver
E_DRIVER_TYPE CSoftwareDriver2::getDriverType() const
{
return EDT_BURNINGSVIDEO;
}
//! Returns the transformation set by setTransform
const core::matrix4& CSoftwareDriver2::getTransform(E_TRANSFORMATION_STATE state) const
{
return Transformation[state].m;
}
//! Creates a render target texture.
ITexture* CSoftwareDriver2::createRenderTargetTexture(const core::dimension2d<s32>& size, const c8* name)
{
CImage* img = new CImage(ECF_SOFTWARE2, size);
ITexture* tex = new CSoftwareTexture2(img, name, false);
img->drop();
return tex;
}
//! Clears the DepthBuffer.
void CSoftwareDriver2::clearZBuffer()
{
if (DepthBuffer)
DepthBuffer->clear();
}
//! Returns an image created from the last rendered frame.
IImage* CSoftwareDriver2::createScreenShot()
{
return new CImage(BackBuffer->getColorFormat(), BackBuffer);
}
//! returns a device dependent texture from a software surface (IImage)
//! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES
ITexture* CSoftwareDriver2::createDeviceDependentTexture(IImage* surface, const char* name)
{
return new CSoftwareTexture2(surface, name, getTextureCreationFlag(ETCF_CREATE_MIP_MAPS));
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CSoftwareDriver2::getMaximalPrimitiveCount() const
{
return 0x00800000;
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a video driver
IVideoDriver* createSoftwareDriver2(const core::dimension2d<s32>& windowSize, bool fullscreen, io::IFileSystem* io, video::IImagePresenter* presenter)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CSoftwareDriver2(windowSize, fullscreen, io, presenter);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr