irrlicht/source/Irrlicht/OctTree.h

377 lines
8.2 KiB
C
Raw Normal View History

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __C_OCT_TREE_H_INCLUDED__
#define __C_OCT_TREE_H_INCLUDED__
#include "SViewFrustum.h"
#include "S3DVertex.h"
#include "aabbox3d.h"
#include "irrArray.h"
#include "irrString.h"
namespace irr
{
//! template octtree. T must be a vertex type which has a member
//! called .Pos, which is a core::vertex3df position.
template <class T>
class OctTree
{
public:
u32 nodeCount;
struct SMeshChunk
{
core::array<T> Vertices;
core::array<u16> Indices;
s32 MaterialId;
};
struct SIndexChunk
{
core::array<u16> Indices;
s32 MaterialId;
};
struct SIndexData
{
u16* Indices;
s32 CurrentSize;
s32 MaxSize;
};
//! constructor
OctTree(const core::array<SMeshChunk>& meshes, s32 minimalPolysPerNode=128)
{
nodeCount = 0;
IndexDataCount = meshes.size();
IndexData = new SIndexData[IndexDataCount];
// construct array of all indices
core::array<SIndexChunk>* indexChunks = new core::array<SIndexChunk>;
SIndexChunk ic;
for (u32 i=0; i<meshes.size(); ++i)
{
IndexData[i].CurrentSize = 0;
IndexData[i].MaxSize = meshes[i].Indices.size();
IndexData[i].Indices = new u16[IndexData[i].MaxSize];
ic.MaterialId = meshes[i].MaterialId;
indexChunks->push_back(ic);
SIndexChunk& tic = (*indexChunks)[i];
for (u32 t=0; t<meshes[i].Indices.size(); ++t)
tic.Indices.push_back(meshes[i].Indices[t]);
}
// create tree
Root = new OctTreeNode(nodeCount, 0, meshes, indexChunks, minimalPolysPerNode);
}
//! returns all ids of polygons partially or fully enclosed
//! by this bounding box.
void calculatePolys(const core::aabbox3d<f32>& box)
{
for (u32 i=0; i<IndexDataCount; ++i)
IndexData[i].CurrentSize = 0;
Root->getPolys(box, IndexData, 0);
}
//! returns all ids of polygons partially or fully enclosed
//! by a view frustum.
void calculatePolys(const scene::SViewFrustum& frustum)
{
for (u32 i=0; i<IndexDataCount; ++i)
IndexData[i].CurrentSize = 0;
Root->getPolys(frustum, IndexData);
}
SIndexData* getIndexData()
{
return IndexData;
}
u32 getIndexDataCount()
{
return IndexDataCount;
}
// for debug purposes only, renders the bounding boxes of the tree
void renderBoundingBoxes(const core::aabbox3d<f32>& box,
core::array< core::aabbox3d<f32> >&outBoxes)
{
Root->renderBoundingBoxes(box, outBoxes);
}
//! destructor
~OctTree()
{
for (u32 i=0; i<IndexDataCount; ++i)
delete [] IndexData[i].Indices;
delete [] IndexData;
delete Root;
}
private:
// private inner class
class OctTreeNode
{
public:
// constructor
OctTreeNode(u32& nodeCount, u32 currentdepth,
const core::array<SMeshChunk>& allmeshdata,
core::array<SIndexChunk>* indices,
s32 minimalPolysPerNode) : IndexData(0),
Depth(currentdepth+1)
{
++nodeCount;
u32 i; // new ISO for scoping problem with different compilers
for (i=0; i<8; ++i)
Children[i] = 0;
if (indices->empty())
{
delete indices;
return;
}
bool found = false;
// find first point for bounding box
for (i=0; i<indices->size(); ++i)
{
if (!(*indices)[i].Indices.empty())
{
Box.reset(allmeshdata[i].Vertices[(*indices)[i].Indices[0]].Pos);
found = true;
break;
}
}
if (!found)
{
delete indices;
return;
}
s32 totalPrimitives = 0;
// now lets calculate our bounding box
for (i=0; i<indices->size(); ++i)
{
totalPrimitives += (*indices)[i].Indices.size();
for (u32 j=0; j<(*indices)[i].Indices.size(); ++j)
Box.addInternalPoint(allmeshdata[i].Vertices[(*indices)[i].Indices[j]].Pos);
}
core::vector3df middle = Box.getCenter();
core::vector3df edges[8];
Box.getEdges(edges);
// calculate all children
core::aabbox3d<f32> box;
if (totalPrimitives > minimalPolysPerNode && !Box.isEmpty())
for (s32 ch=0; ch<8; ++ch)
{
box.reset(middle);
box.addInternalPoint(edges[ch]);
// create indices for child
core::array<SIndexChunk>* cindexChunks = new core::array<SIndexChunk>;
bool added = false;
for (i=0; i<allmeshdata.size(); ++i)
{
SIndexChunk ic;
ic.MaterialId = allmeshdata[i].MaterialId;
cindexChunks->push_back(ic);
SIndexChunk& tic = (*cindexChunks)[i];
for (u32 t=0; t<(*indices)[i].Indices.size(); t+=3)
{
if (box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t]].Pos) &&
box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t+1]].Pos) &&
box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t+2]].Pos))
{
tic.Indices.push_back((*indices)[i].Indices[t]);
tic.Indices.push_back((*indices)[i].Indices[t+1]);
tic.Indices.push_back((*indices)[i].Indices[t+2]);
(*indices)[i].Indices.erase(t, 3);
t-=3;
added = true;
}
}
}
if (added)
Children[ch] = new OctTreeNode(nodeCount, Depth,
allmeshdata, cindexChunks, minimalPolysPerNode);
else
delete cindexChunks;
} // end for all possible children
IndexData = indices;
}
// destructor
~OctTreeNode()
{
delete IndexData;
for (u32 i=0; i<8; ++i)
delete Children[i];
}
// returns all ids of polygons partially or full enclosed
// by this bounding box.
void getPolys(const core::aabbox3d<f32>& box, SIndexData* idxdata, u32 parentTest ) const
{
// if not full inside
if ( parentTest != 2 )
{
// partially inside ?
parentTest = (u32) Box.intersectsWithBox(box);
if ( 0 == parentTest )
return;
// fully inside ?
parentTest+= Box.isFullInside(box);
}
//if (Box.intersectsWithBox(box))
{
u32 cnt = IndexData->size();
u32 i; // new ISO for scoping problem in some compilers
for (i=0; i<cnt; ++i)
{
s32 idxcnt = (*IndexData)[i].Indices.size();
if (idxcnt)
{
memcpy(&idxdata[i].Indices[idxdata[i].CurrentSize],
&(*IndexData)[i].Indices[0], idxcnt * sizeof(s16));
idxdata[i].CurrentSize += idxcnt;
}
}
for (i=0; i<8; ++i)
if (Children[i])
Children[i]->getPolys(box, idxdata,parentTest);
}
}
// returns all ids of polygons partially or full enclosed
// by the view frustum.
void getPolys(const scene::SViewFrustum& frustum, SIndexData* idxdata,u32 parentTest) const
{
s32 i; // new ISO for scoping problem in some compilers
// not fully inside
//if ( parentTest != 2 )
{
core::vector3df edges[8];
Box.getEdges(edges);
u32 bitTest = 0;
for (i=0; i<scene::SViewFrustum::VF_PLANE_COUNT; ++i)
{
bool boxInFrustum = false;
for (int j=0; j<8; ++j)
// if (frustum.planes[i].classifyPointRelation(edges[j]) != core::ISREL3D_BACK)
if (!frustum.planes[i].isFrontFacing(edges[j]) )
{
boxInFrustum = true;
break;
}
if (!boxInFrustum)
return;
}
}
s32 cnt = IndexData->size();
for (i=0; i<cnt; ++i)
{
s32 idxcnt = (*IndexData)[i].Indices.size();
if (idxcnt)
{
memcpy(&idxdata[i].Indices[idxdata[i].CurrentSize],
&(*IndexData)[i].Indices[0], idxcnt * sizeof(s16));
idxdata[i].CurrentSize += idxcnt;
}
}
for (i=0; i<8; ++i)
if (Children[i])
Children[i]->getPolys(frustum, idxdata,parentTest);
}
void renderBoundingBoxes(const core::aabbox3d<f32>& box,
core::array< core::aabbox3d<f32> >&outBoxes)
{
if (Box.intersectsWithBox(box))
{
outBoxes.push_back(Box);
for (u32 i=0; i<8; ++i)
if (Children[i])
Children[i]->renderBoundingBoxes(box, outBoxes);
}
}
private:
core::aabbox3df Box;
core::array<SIndexChunk>* IndexData;
OctTreeNode* Children[8];
u32 Depth;
};
OctTreeNode* Root;
SIndexData* IndexData;
u32 IndexDataCount;
};
} // end namespace
#endif