6e262ea6ec
This template function is a polyfill of `std::make_unique`, which is unavailable in GCC 4.9 (should we even be supporting this old thing?).
392 lines
10 KiB
C++
392 lines
10 KiB
C++
/*
|
|
Copyright (c) 2016 yvt
|
|
|
|
This file is part of OpenSpades.
|
|
|
|
OpenSpades is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenSpades is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenSpades. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
|
|
namespace stmp {
|
|
struct bad_optional_access : public std::logic_error {
|
|
bad_optional_access() : std::logic_error{"bad optional access"} {};
|
|
};
|
|
|
|
// creating our own version because boost is overweighted
|
|
// (preproecssing optional.hpp emits 50000 lines of C++ code!)
|
|
// the corresponding type in .NET Framework is System.Nullable<T>.
|
|
template <class T> class optional {
|
|
typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type storage;
|
|
bool has_some;
|
|
using Allocator = std::allocator<T>;
|
|
|
|
public:
|
|
optional() : has_some(false) {}
|
|
optional(const T &v) : has_some(false) { reset(v); }
|
|
optional(T &&v) : has_some(false) { reset(std::forward<T>(v)); }
|
|
optional(const optional &o) : has_some(o.has_some) {
|
|
if (has_some) {
|
|
Allocator().construct(get_pointer(), o.get());
|
|
}
|
|
}
|
|
optional(optional &&o) : has_some(o.has_some) {
|
|
if (has_some) {
|
|
Allocator().construct(get_pointer(), std::move(o.get()));
|
|
o.has_some = false;
|
|
}
|
|
}
|
|
~optional() { reset(); }
|
|
void reset() {
|
|
if (has_some) {
|
|
Allocator().destroy(get_pointer());
|
|
has_some = false;
|
|
}
|
|
}
|
|
template <class... Args> void reset(Args &&... args) {
|
|
reset();
|
|
Allocator().construct(reinterpret_cast<T *>(&storage), std::forward<Args>(args)...);
|
|
has_some = true;
|
|
}
|
|
void operator=(const T &o) {
|
|
if (has_some) {
|
|
**this = o;
|
|
} else {
|
|
reset(o);
|
|
}
|
|
}
|
|
void operator=(T &&o) {
|
|
if (has_some) {
|
|
**this = std::move(o);
|
|
} else {
|
|
reset(std::move(o));
|
|
}
|
|
}
|
|
void operator=(const optional &o) {
|
|
if (has_some && o.has_some) {
|
|
**this = *o;
|
|
} else if (o.has_some) {
|
|
reset(*o);
|
|
} else {
|
|
reset();
|
|
}
|
|
}
|
|
void operator=(optional &&o) {
|
|
if (has_some && o.has_some) {
|
|
**this = *std::move(o);
|
|
} else if (o.has_some) {
|
|
reset(*std::move(o));
|
|
} else {
|
|
reset();
|
|
}
|
|
}
|
|
|
|
T *get_pointer() { return has_some ? reinterpret_cast<T *>(&storage) : nullptr; }
|
|
const T *get_pointer() const {
|
|
return has_some ? reinterpret_cast<const T *>(&storage) : nullptr;
|
|
}
|
|
|
|
T &get() & {
|
|
assert(has_some);
|
|
return *get_pointer();
|
|
}
|
|
const T &get() const & {
|
|
assert(has_some);
|
|
return *get_pointer();
|
|
}
|
|
T &&get() && {
|
|
assert(has_some);
|
|
return *get_pointer();
|
|
}
|
|
const T &&get() const && {
|
|
assert(has_some);
|
|
return *get_pointer();
|
|
}
|
|
|
|
T &value() & {
|
|
if (!has_some) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return *get_pointer();
|
|
}
|
|
const T &value() const & {
|
|
if (!has_some) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return *get_pointer();
|
|
}
|
|
T &&value() && {
|
|
if (!has_some) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return std::move(*get_pointer());
|
|
}
|
|
const T &&value() const && {
|
|
if (!has_some) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return std::move(*get_pointer());
|
|
}
|
|
|
|
template <class U> T value_or(U &&default_value) const & {
|
|
return *this ? get() : static_cast<T>(std::forward<U>(default_value));
|
|
}
|
|
template <class U> T value_or(U &&default_value) && {
|
|
return *this ? std::move(get()) : static_cast<T>(std::forward<U>(default_value));
|
|
}
|
|
|
|
T *operator->() { return &get(); }
|
|
const T *operator->() const { return &get(); }
|
|
|
|
T &operator*() {
|
|
assert(has_some);
|
|
return get();
|
|
}
|
|
const T &operator*() const {
|
|
assert(has_some);
|
|
return get();
|
|
}
|
|
|
|
explicit operator bool() const { return has_some; }
|
|
|
|
bool operator==(const optional &rhs) const {
|
|
return has_some == rhs.has_some && (!has_some || **this == *rhs);
|
|
}
|
|
bool operator!=(const optional &rhs) const {
|
|
return has_some != rhs.has_some || (has_some && **this != *rhs);
|
|
}
|
|
|
|
template <class U> bool operator==(const U &rhs) const { return has_some && **this == rhs; }
|
|
template <class U> bool operator!=(const U &rhs) const { return !has_some || **this != rhs; }
|
|
};
|
|
|
|
template <class T, class U>
|
|
typename std::enable_if<!std::is_reference<T>::value, bool>::type
|
|
operator==(const U &lhs, const optional<T> rhs) {
|
|
return rhs && lhs == *rhs;
|
|
}
|
|
template <class T, class U>
|
|
typename std::enable_if<!std::is_reference<T>::value, bool>::type
|
|
operator!=(const U &lhs, const optional<T> rhs) {
|
|
return !rhs || lhs != *rhs;
|
|
}
|
|
|
|
/**
|
|
* Specialization of `optional` for references. Works very similarly to
|
|
* pointers, but it's better at communicating the nullability.
|
|
*
|
|
* Boost's `optional` has this, while C++17's `optional` doesn't.
|
|
*/
|
|
template <class T> class optional<T &> {
|
|
T *ptr;
|
|
|
|
public:
|
|
optional() : ptr(nullptr) {}
|
|
optional(T *v) : ptr(v) {}
|
|
optional(T &v) : ptr(&v) {}
|
|
optional(const optional &o) : ptr(o.ptr) {}
|
|
void reset() { ptr = nullptr; }
|
|
void operator=(const optional &o) { ptr = o.ptr; }
|
|
|
|
T *get_pointer() { return ptr; }
|
|
const T *get_pointer() const { return ptr; }
|
|
|
|
T &get() {
|
|
assert(ptr);
|
|
return *get_pointer();
|
|
}
|
|
const T &get() const {
|
|
assert(ptr);
|
|
return *get_pointer();
|
|
}
|
|
|
|
T &value() {
|
|
if (!ptr) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return *get_pointer();
|
|
}
|
|
const T &value() const {
|
|
if (!ptr) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return *get_pointer();
|
|
}
|
|
|
|
template <class U> T &value_or(U &&default_value) const & {
|
|
return *this ? get() : static_cast<T>(std::forward<U>(default_value));
|
|
}
|
|
template <class U> T &value_or(U &&default_value) && {
|
|
return *this ? std::move(get()) : static_cast<T>(std::forward<U>(default_value));
|
|
}
|
|
|
|
T *operator->() { return &get(); }
|
|
const T *operator->() const { return &get(); }
|
|
|
|
T &operator*() { return get(); }
|
|
const T &operator*() const { return get(); }
|
|
|
|
explicit operator bool() const { return !!ptr; }
|
|
|
|
bool operator==(const optional &rhs) const { return ptr == rhs.ptr; }
|
|
bool operator!=(const optional &rhs) const { return ptr != rhs.ptr; }
|
|
|
|
bool operator==(const T *rhs) const { return ptr == rhs; }
|
|
bool operator!=(const T *rhs) const { return ptr != rhs; }
|
|
};
|
|
|
|
template <class T> bool operator==(const T *lhs, const optional<T &> rhs) {
|
|
return lhs == rhs.get_pointer();
|
|
}
|
|
template <class T> bool operator!=(const T *lhs, const optional<T &> rhs) {
|
|
return lhs != rhs.get_pointer();
|
|
}
|
|
|
|
template <class T> class optional<const T &> {
|
|
const T *ptr;
|
|
|
|
public:
|
|
optional() : ptr(nullptr) {}
|
|
optional(const T *v) : ptr(v) {}
|
|
optional(const T &v) : ptr(&v) {}
|
|
optional(const optional &o) : ptr(o.ptr) {}
|
|
void reset() { ptr = nullptr; }
|
|
void operator=(const optional &o) { ptr = o.ptr; }
|
|
|
|
const T *get_pointer() const { return ptr; }
|
|
|
|
const T &get() const {
|
|
assert(ptr);
|
|
return *get_pointer();
|
|
}
|
|
|
|
const T &value() const {
|
|
if (!ptr) {
|
|
throw bad_optional_access{};
|
|
}
|
|
return *get_pointer();
|
|
}
|
|
|
|
template <class U> T &value_or(U &&default_value) const & {
|
|
return *this ? get() : static_cast<T>(std::forward<U>(default_value));
|
|
}
|
|
|
|
const T *operator->() const { return &get(); }
|
|
const T &operator*() const { return get(); }
|
|
|
|
explicit operator bool() const { return !!ptr; }
|
|
|
|
bool operator==(const optional &rhs) const { return ptr == rhs.ptr; }
|
|
bool operator!=(const optional &rhs) const { return ptr != rhs.ptr; }
|
|
|
|
bool operator==(const T *rhs) const { return ptr == rhs; }
|
|
bool operator!=(const T *rhs) const { return ptr != rhs; }
|
|
};
|
|
|
|
template <class T> bool operator==(const T *lhs, const optional<const T &> rhs) {
|
|
return lhs == rhs.get_pointer();
|
|
}
|
|
template <class T> bool operator!=(const T *lhs, const optional<const T &> rhs) {
|
|
return lhs != rhs.get_pointer();
|
|
}
|
|
|
|
template <class T> optional<typename std::decay<T>::type> make_optional(T &&value) {
|
|
return {std::forward<T>(value)};
|
|
}
|
|
|
|
/** Safe atomic smart pointer. */
|
|
template <class T> class atomic_unique_ptr {
|
|
std::atomic<T *> inner;
|
|
|
|
public:
|
|
inline atomic_unique_ptr() : inner{nullptr} {}
|
|
inline atomic_unique_ptr(std::unique_ptr<T> &&x) : inner{x.release()} {}
|
|
atomic_unique_ptr(const atomic_unique_ptr &) = delete;
|
|
inline atomic_unique_ptr(atomic_unique_ptr &&x) : inner{x.release()} {}
|
|
inline ~atomic_unique_ptr() { take(); }
|
|
|
|
void operator=(const atomic_unique_ptr &) = delete;
|
|
void operator=(atomic_unique_ptr &&x) { exchange(x.take()); }
|
|
|
|
operator bool() const { return inner.load() != nullptr; }
|
|
|
|
inline std::unique_ptr<T>
|
|
unsafe_exchange(std::unique_ptr<T> &&desired,
|
|
std::memory_order order = std::memory_order_seq_cst) {
|
|
return std::unique_ptr<T>{inner.exchange(desired.release(), order)};
|
|
}
|
|
|
|
inline std::unique_ptr<T> exchange(std::unique_ptr<T> &&desired) {
|
|
return unsafe_exchange(std::move(desired));
|
|
}
|
|
|
|
inline std::unique_ptr<T> take() {
|
|
auto p = unsafe_exchange(std::unique_ptr<T>{}, std::memory_order_relaxed);
|
|
if (p) {
|
|
std::atomic_thread_fence(std::memory_order_acquire);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
inline void store(std::unique_ptr<T> &&desired) { exchange(std::move(desired)); }
|
|
|
|
inline T *release() { return take().release(); }
|
|
};
|
|
|
|
/** `dyn Fn` */
|
|
template <class T> class dyn_function {
|
|
public:
|
|
static_assert(sizeof(T) != sizeof(T), "bad usage");
|
|
};
|
|
|
|
template <class R, class... Args> class dyn_function<R(Args...)> {
|
|
public:
|
|
virtual R operator()(Args &&... args) const = 0;
|
|
};
|
|
|
|
/** `impl Fn` */
|
|
template <class T, class Fn> class function {
|
|
public:
|
|
static_assert(sizeof(T) != sizeof(T), "bad usage");
|
|
};
|
|
|
|
template <class T, class R, class... Args>
|
|
class function<T, R(Args...)> : public dyn_function<R(Args...)> {
|
|
public:
|
|
function(T &&inner) : inner{inner} {}
|
|
R operator()(Args &&... args) const override { return inner(std::forward<Args>(args)...); }
|
|
|
|
private:
|
|
T inner;
|
|
};
|
|
|
|
template <class Fn, class T> function<T, Fn> make_fn(T &&inner) {
|
|
return function<T, Fn>(std::move(inner));
|
|
}
|
|
|
|
/** Polyfill of `std::make_unique` for compilers which don't support it. */
|
|
template <class T, class... Args> std::unique_ptr<T> make_unique(Args &&... args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
} // namespace stmp
|