992 lines
27 KiB
C++
992 lines
27 KiB
C++
/*
|
|
Copyright (c) 2013 yvt
|
|
|
|
This file is part of OpenSpades.
|
|
|
|
OpenSpades is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenSpades is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenSpades. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm> // std::max / std::min
|
|
#include <cstdint> // uint32_t --> msvc
|
|
#include <cmath>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <functional>
|
|
#include <mutex>
|
|
|
|
namespace spades {
|
|
|
|
#pragma mark - Random number generation
|
|
|
|
/** Generates a random `uint_fast64_t`. This function is thread-safe. */
|
|
std::uint_fast64_t SampleRandom();
|
|
|
|
/** Generates a random `float`. This function is thread-safe. */
|
|
float SampleRandomFloat();
|
|
|
|
/**
|
|
* Generates an integer in a specified inclusive range.
|
|
* This function is thread-safe.
|
|
*
|
|
* `T` must be one of `int`, `unsigned int`, `long`, `unsigned long`,
|
|
* `short`, `unsigned short`, `long long`, and `unsigned long long`.
|
|
*/
|
|
template <class T = int> T SampleRandomInt(T a, T b);
|
|
|
|
/** Generates a random `bool`. This function is thread-safe. */
|
|
inline bool SampleRandomBool() { return SampleRandom() & 0x1; }
|
|
|
|
/** Get a mutable reference to a random element from a container. */
|
|
template <class T> inline typename T::reference SampleRandomElement(T &container) {
|
|
auto begin = std::begin(container);
|
|
auto end = std::end(container);
|
|
auto numElements = std::distance(begin, end);
|
|
begin += SampleRandomInt<decltype(numElements)>(0, numElements - 1);
|
|
return *begin;
|
|
}
|
|
|
|
/** Get a constant reference to a random element from a container. */
|
|
template <class T> inline typename T::const_reference SampleRandomElement(const T &container) {
|
|
auto begin = std::begin(container);
|
|
auto end = std::end(container);
|
|
auto numElements = std::distance(begin, end);
|
|
begin += SampleRandomInt(0, numElements - 1);
|
|
return *begin;
|
|
}
|
|
|
|
|
|
#pragma mark - Integer Vector
|
|
|
|
class IntVector3 {
|
|
public:
|
|
int x, y, z;
|
|
|
|
IntVector3() = default;
|
|
IntVector3(const IntVector3 &) = default;
|
|
IntVector3(int x, int y, int z) : x(x), y(y), z(z) {}
|
|
|
|
static IntVector3 Make(int x, int y, int z) {
|
|
IntVector3 v = {x, y, z};
|
|
return v;
|
|
}
|
|
|
|
static int Dot(const IntVector3 &a, const IntVector3 &b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
IntVector3 operator+(const IntVector3 &v) const { return Make(x + v.x, y + v.y, z + v.z); }
|
|
IntVector3 operator-(const IntVector3 &v) const { return Make(x - v.x, y - v.y, z - v.z); }
|
|
IntVector3 operator*(const IntVector3 &v) const { return Make(x * v.x, y * v.y, z * v.z); }
|
|
IntVector3 operator/(const IntVector3 &v) const { return Make(x / v.x, y / v.y, z / v.z); }
|
|
|
|
IntVector3 operator+(int v) const { return Make(x + v, y + v, z + v); }
|
|
IntVector3 operator-(int v) const { return Make(x - v, y - v, z - v); }
|
|
IntVector3 operator*(int v) const { return Make(x * v, y * v, z * v); }
|
|
IntVector3 operator/(int v) const { return Make(x / v, y / v, z / v); }
|
|
|
|
IntVector3 operator-() const { return Make(-x, -y, -z); }
|
|
|
|
bool operator==(const IntVector3 &v) const { return x == v.x && y == v.y && z == v.z; }
|
|
|
|
int GetManhattanLength() const {
|
|
return std::max(x, -x) + std::max(y, -y) + std::max(z, -z);
|
|
}
|
|
|
|
int GetChebyshevLength() const {
|
|
return std::max(std::max(x, -x), std::max(std::max(y, -y), std::max(z, -z)));
|
|
}
|
|
|
|
IntVector3 &operator+=(const IntVector3 &v) {
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator-=(const IntVector3 &v) {
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator*=(const IntVector3 &v) {
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator/=(const IntVector3 &v) {
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator+=(int v) {
|
|
x += v;
|
|
y += v;
|
|
z += v;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator-=(int v) {
|
|
x -= v;
|
|
y -= v;
|
|
z -= v;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator*=(int v) {
|
|
x *= v;
|
|
y *= v;
|
|
z *= v;
|
|
return *this;
|
|
}
|
|
|
|
IntVector3 &operator/=(int v) {
|
|
x /= v;
|
|
y /= v;
|
|
z /= v;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
#pragma mark - Real Vector
|
|
|
|
class Vector2 {
|
|
public:
|
|
float x, y;
|
|
|
|
Vector2() = default;
|
|
Vector2(const Vector2 &) = default;
|
|
Vector2(float x, float y) : x(x), y(y) {}
|
|
|
|
static Vector2 Make(float x, float y) {
|
|
Vector2 v = {x, y};
|
|
return v;
|
|
}
|
|
|
|
Vector2 operator+(const Vector2 &v) const { return Make(x + v.x, y + v.y); }
|
|
Vector2 operator-(const Vector2 &v) const { return Make(x - v.x, y - v.y); }
|
|
Vector2 operator*(const Vector2 &v) const { return Make(x * v.x, y * v.y); }
|
|
Vector2 operator/(const Vector2 &v) const { return Make(x / v.x, y / v.y); }
|
|
|
|
Vector2 operator+(float v) const { return Make(x + v, y + v); }
|
|
Vector2 operator-(float v) const { return Make(x - v, y - v); }
|
|
Vector2 operator*(float v) const { return Make(x * v, y * v); }
|
|
Vector2 operator/(float v) const { return Make(x / v, y / v); }
|
|
|
|
Vector2 operator-() const { return Make(-x, -y); }
|
|
bool operator==(const Vector2 &v) const { return x == v.x && y == v.y; }
|
|
|
|
Vector2 &operator+=(const Vector2 &v) {
|
|
x += v.x;
|
|
y += v.y;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator-=(const Vector2 &v) {
|
|
x -= v.x;
|
|
y -= v.y;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator*=(const Vector2 &v) {
|
|
x *= v.x;
|
|
y *= v.y;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator/=(const Vector2 &v) {
|
|
x /= v.x;
|
|
y /= v.y;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator+=(float v) {
|
|
x += v;
|
|
y += v;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator-=(float v) {
|
|
x -= v;
|
|
y -= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator*=(float v) {
|
|
x *= v;
|
|
y *= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector2 &operator/=(float v) {
|
|
x /= v;
|
|
y /= v;
|
|
return *this;
|
|
}
|
|
|
|
static float Dot(const Vector2 &a, const Vector2 &b) { return a.x * b.x + a.y * b.y; }
|
|
|
|
float GetPoweredLength() const { return x * x + y * y; }
|
|
|
|
float GetLength() const { return sqrtf(GetPoweredLength()); }
|
|
|
|
float GetManhattanLength() const { return fabsf(x) + fabsf(y); }
|
|
|
|
float GetChebyshevLength() const { return std::max(fabsf(x), fabsf(y)); }
|
|
|
|
Vector2 Normalize() const {
|
|
float scale = 1.f / GetLength();
|
|
return Make(x * scale, y * scale);
|
|
}
|
|
|
|
Vector2 Floor() const { return Vector2(floorf(x), floorf(y)); }
|
|
};
|
|
|
|
class Vector3 {
|
|
public:
|
|
float x, y, z;
|
|
|
|
Vector3() = default;
|
|
Vector3(const Vector3 &) = default;
|
|
Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
|
|
|
|
static Vector3 Make(float x, float y, float z) {
|
|
Vector3 v = {x, y, z};
|
|
return v;
|
|
}
|
|
|
|
Vector3 operator+(const Vector3 &v) const { return Make(x + v.x, y + v.y, z + v.z); }
|
|
Vector3 operator-(const Vector3 &v) const { return Make(x - v.x, y - v.y, z - v.z); }
|
|
Vector3 operator*(const Vector3 &v) const { return Make(x * v.x, y * v.y, z * v.z); }
|
|
Vector3 operator/(const Vector3 &v) const { return Make(x / v.x, y / v.y, z / v.z); }
|
|
|
|
Vector3 operator+(float v) const { return Make(x + v, y + v, z + v); }
|
|
Vector3 operator-(float v) const { return Make(x - v, y - v, z - v); }
|
|
Vector3 operator*(float v) const { return Make(x * v, y * v, z * v); }
|
|
Vector3 operator/(float v) const { return Make(x / v, y / v, z / v); }
|
|
|
|
Vector3 operator-() const { return Make(-x, -y, -z); }
|
|
bool operator==(const Vector3 &v) const { return x == v.x && y == v.y && z == v.z; }
|
|
|
|
Vector3 &operator+=(const Vector3 &v) {
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator-=(const Vector3 &v) {
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator*=(const Vector3 &v) {
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator/=(const Vector3 &v) {
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator+=(float v) {
|
|
x += v;
|
|
y += v;
|
|
z += v;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator-=(float v) {
|
|
x -= v;
|
|
y -= v;
|
|
z -= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator*=(float v) {
|
|
x *= v;
|
|
y *= v;
|
|
z *= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector3 &operator/=(float v) {
|
|
x /= v;
|
|
y /= v;
|
|
z /= v;
|
|
return *this;
|
|
}
|
|
|
|
static float Dot(const Vector3 &a, const Vector3 &b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
static Vector3 Cross(const Vector3 &a, const Vector3 &b) {
|
|
return Make(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
static Vector3 Normal(const Vector3 &a, const Vector3 &b, const Vector3 &c) {
|
|
return Cross(c - a, c - b).Normalize();
|
|
}
|
|
|
|
float GetPoweredLength() const { return x * x + y * y + z * z; }
|
|
|
|
float GetLength() const { return sqrtf(GetPoweredLength()); }
|
|
|
|
float GetManhattanLength() const { return fabsf(x) + fabsf(y) + fabsf(z); }
|
|
|
|
float GetChebyshevLength() const {
|
|
return std::max(fabsf(x), std::max(fabsf(y), fabsf(z)));
|
|
}
|
|
|
|
Vector3 Normalize() const {
|
|
float scale = GetLength();
|
|
if (scale != 0.f)
|
|
scale = 1.f / scale;
|
|
return Make(x * scale, y * scale, z * scale);
|
|
}
|
|
|
|
IntVector3 Floor() const {
|
|
return IntVector3::Make((int)floorf(x), (int)floorf(y), (int)floorf(z));
|
|
}
|
|
};
|
|
|
|
class Vector4 {
|
|
public:
|
|
float x, y, z, w;
|
|
|
|
Vector4() = default;
|
|
Vector4(const Vector4 &) = default;
|
|
Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
|
|
|
|
static Vector4 Make(float x, float y, float z, float w) {
|
|
Vector4 v = {x, y, z, w};
|
|
return v;
|
|
}
|
|
|
|
Vector4 operator+(const Vector4 &v) const {
|
|
return Make(x + v.x, y + v.y, z + v.z, w + v.w);
|
|
}
|
|
Vector4 operator-(const Vector4 &v) const {
|
|
return Make(x - v.x, y - v.y, z - v.z, w - v.w);
|
|
}
|
|
Vector4 operator*(const Vector4 &v) const {
|
|
return Make(x * v.x, y * v.y, z * v.z, w * v.w);
|
|
}
|
|
Vector4 operator/(const Vector4 &v) const {
|
|
return Make(x / v.x, y / v.y, z / v.z, w / v.w);
|
|
}
|
|
|
|
Vector4 operator+(float v) const { return Make(x + v, y + v, z + v, w + v); }
|
|
Vector4 operator-(float v) const { return Make(x - v, y - v, z - v, w - v); }
|
|
Vector4 operator*(float v) const { return Make(x * v, y * v, z * v, w * v); }
|
|
Vector4 operator/(float v) const { return Make(x / v, y / v, z / v, w / v); }
|
|
|
|
Vector4 operator-() const { return Make(-x, -y, -z, -w); }
|
|
|
|
bool operator==(const Vector4 &v) const {
|
|
return x == v.x && y == v.y && z == v.z && w == v.w;
|
|
}
|
|
bool operator!=(const Vector4 &v) const {
|
|
return x != v.x || y != v.y || z != v.z || z != v.w;
|
|
}
|
|
|
|
Vector4 &operator+=(const Vector4 &v) {
|
|
x += v.x;
|
|
y += v.y;
|
|
z += v.z;
|
|
w += v.w;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator-=(const Vector4 &v) {
|
|
x -= v.x;
|
|
y -= v.y;
|
|
z -= v.z;
|
|
w -= v.w;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator*=(const Vector4 &v) {
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
w *= v.w;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator/=(const Vector4 &v) {
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
w /= v.w;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator+=(float v) {
|
|
x += v;
|
|
y += v;
|
|
z += v;
|
|
w += v;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator-=(float v) {
|
|
x -= v;
|
|
y -= v;
|
|
z -= v;
|
|
w -= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator*=(float v) {
|
|
x *= v;
|
|
y *= v;
|
|
z *= v;
|
|
w *= v;
|
|
return *this;
|
|
}
|
|
|
|
Vector4 &operator/=(float v) {
|
|
x /= v;
|
|
y /= v;
|
|
z /= v;
|
|
w /= v;
|
|
return *this;
|
|
}
|
|
|
|
static float Dot(const Vector4 &a, const Vector4 &b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
|
}
|
|
|
|
float GetPoweredLength() const { return x * x + y * y + z * z + w * w; }
|
|
|
|
float GetLength() const { return sqrtf(GetPoweredLength()); }
|
|
|
|
float GetManhattanLength() const { return fabsf(x) + fabsf(y) + fabsf(z) + fabsf(w); }
|
|
|
|
float GetChebyshevLength() const {
|
|
return std::max(std::max(fabsf(x), std::max(fabsf(y), fabsf(z))), fabsf(w));
|
|
}
|
|
|
|
Vector4 Normalize() const {
|
|
float scale = 1.f / GetLength();
|
|
return Make(x * scale, y * scale, z * scale, w * scale);
|
|
}
|
|
|
|
Vector3 GetXYZ() const { return Vector3::Make(x, y, z); }
|
|
};
|
|
|
|
static inline Vector2 MakeVector2(float x, float y) { return Vector2::Make(x, y); }
|
|
static inline Vector3 MakeVector3(float x, float y, float z) { return Vector3::Make(x, y, z); }
|
|
static inline Vector3 MakeVector3(IntVector3 v) {
|
|
return Vector3::Make(static_cast<float>(v.x), static_cast<float>(v.y),
|
|
static_cast<float>(v.z));
|
|
}
|
|
static inline Vector4 MakeVector4(float x, float y, float z, float w) {
|
|
return Vector4::Make(x, y, z, w);
|
|
}
|
|
|
|
#pragma mark - Line
|
|
|
|
struct Line3 {
|
|
Vector3 v1, v2;
|
|
|
|
/** true if line if bounded at v1 */
|
|
bool end1;
|
|
|
|
/** true if line if bounded at v2 */
|
|
bool end2;
|
|
|
|
Line3() {}
|
|
Line3(Vector3 a, Vector3 b, bool e1, bool e2) : v1(a), v2(b), end1(e1), end2(e2) {}
|
|
static Line3 MakeLineSegment(Vector3 a, Vector3 b) { return Line3(a, b, true, true); }
|
|
static Line3 MakeLine(Vector3 a, Vector3 b) { return Line3(a, b, false, false); }
|
|
|
|
float GetDistanceTo(Vector3, bool supposeUnbounded = false);
|
|
Vector3 Project(Vector3, bool supposeUnbounded = false);
|
|
};
|
|
|
|
#pragma mark - Plane
|
|
|
|
struct Plane3 {
|
|
Vector3 n;
|
|
float w;
|
|
|
|
Plane3() = default;
|
|
Plane3(const Plane3 &) = default;
|
|
Plane3(float x, float y, float z, float ww) : n(MakeVector3(x, y, z)), w(ww) {}
|
|
Plane3(const Vector3 &v1, const Vector3 &v2, const Vector3 &v3) {
|
|
n = Vector3::Normal(v1, v2, v3);
|
|
w = -Vector3::Dot(n, v1);
|
|
}
|
|
|
|
static Plane3 PlaneWithPointOnPlane(Vector3 point, Vector3 normal) {
|
|
return Plane3(normal.x, normal.y, normal.z, -Vector3::Dot(point, normal));
|
|
}
|
|
|
|
Plane3 Flipped() const { return Plane3(-n.x, -n.y, -n.z, -w); }
|
|
|
|
float GetDistanceTo(Vector3 v) const { return Vector3::Dot(n, v) + w; }
|
|
|
|
Vector3 Project(Vector3 v) const { return v - n * GetDistanceTo(v); }
|
|
|
|
Plane3 TowardTo(Vector3 v) const {
|
|
if (GetDistanceTo(v) < 0.f)
|
|
return -*this;
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
Plane3 operator-() const { return Plane3(-n.x, -n.y, -n.z, w); }
|
|
};
|
|
|
|
struct Plane2 {
|
|
Vector2 n;
|
|
float w;
|
|
|
|
Plane2() = default;
|
|
Plane2(const Plane2 &) = default;
|
|
Plane2(float x, float y, float ww) : n(Vector2::Make(x, y)), w(ww) {}
|
|
Plane2(const Vector2 &v1, const Vector2 &v2) {
|
|
n = v2 - v1;
|
|
n = Vector2::Make(n.y, -n.x);
|
|
w = -Vector2::Dot(n, v1);
|
|
}
|
|
|
|
float GetDistanceTo(Vector2 v) const { return Vector2::Dot(n, v) + w; }
|
|
|
|
Vector2 Project(Vector2 v) const { return v - n * GetDistanceTo(v); }
|
|
|
|
Plane2 TowardTo(Vector2 v) const {
|
|
if (GetDistanceTo(v) < 0.f)
|
|
return -*this;
|
|
else
|
|
return *this;
|
|
}
|
|
|
|
Plane2 operator-() const { return Plane2(-n.x, -n.y, w); }
|
|
};
|
|
|
|
#pragma mark - Matrix
|
|
|
|
void Matrix4Multiply(const float a[16], const float b[16], float out[16]);
|
|
|
|
struct Matrix4 {
|
|
// column major matrix
|
|
float m[16];
|
|
Matrix4() = default;
|
|
Matrix4(const Matrix4 &) = default;
|
|
explicit Matrix4(float *elms);
|
|
Matrix4(float m00, float m10, float m20, float m30, float m01, float m11, float m21,
|
|
float m31, float m02, float m12, float m22, float m32, float m03, float m13,
|
|
float m23, float m33);
|
|
|
|
static Matrix4 Identity();
|
|
static Matrix4 Translate(Vector3);
|
|
static Matrix4 Translate(float, float, float);
|
|
static Matrix4 Rotate(Vector3 axis, float theta);
|
|
static Matrix4 Scale(float);
|
|
static Matrix4 Scale(Vector3);
|
|
static Matrix4 Scale(float, float, float);
|
|
|
|
Matrix4 Transposed() const;
|
|
Matrix4 Inversed() const;
|
|
|
|
/** inverses perpendicular matrix */
|
|
Matrix4 InversedFast() const;
|
|
|
|
Vector3 GetAxis(int) const;
|
|
Vector3 GetOrigin() const;
|
|
|
|
static Matrix4 FromAxis(Vector3 a1, Vector3 a2, Vector3 a3, Vector3 origin);
|
|
|
|
Matrix4 operator*(const Matrix4 &other) const;
|
|
Matrix4 &operator*=(const Matrix4 &other) {
|
|
*this = *this * other;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
Vector4 operator*(const Matrix4 &mat, const Vector4 &v);
|
|
Vector4 operator*(const Matrix4 &mat, const Vector3 &v);
|
|
// Vector4 operator *(const Vector4& v, const Matrix4& mat);
|
|
|
|
#pragma mark - Axis-Aligned Bounding Box
|
|
|
|
class AABB2 {
|
|
public:
|
|
Vector2 min, max;
|
|
|
|
AABB2() {}
|
|
AABB2(Vector2 minVector, Vector2 maxVector) : min(minVector), max(maxVector) {}
|
|
|
|
AABB2(float minX, float minY, float width, float height)
|
|
: min(Vector2::Make(minX, minY)), max(Vector2::Make(minX + width, minY + height)) {}
|
|
|
|
AABB2 Inflate(float amount) const {
|
|
return AABB2(min - Vector2::Make(amount, amount), max + Vector2::Make(amount, amount));
|
|
}
|
|
|
|
AABB2 Translated(float x, float y) const {
|
|
return AABB2(min + Vector2::Make(x, y), max + Vector2::Make(x, y));
|
|
}
|
|
AABB2 Translated(Vector2 v) const { return AABB2(min + v, max + v); }
|
|
|
|
float GetMinX() const { return min.x; }
|
|
float GetMaxX() const { return max.x; }
|
|
float GetMinY() const { return min.y; }
|
|
float GetMaxY() const { return max.y; }
|
|
float GetWidth() const { return GetMaxX() - GetMinX(); }
|
|
float GetHeight() const { return GetMaxY() - GetMinY(); }
|
|
|
|
bool operator&&(const Vector2 &v) const {
|
|
return v.x >= min.x && v.y >= min.y && v.x < max.x && v.y < max.y;
|
|
}
|
|
|
|
bool operator&&(const AABB2 &o) const {
|
|
return min.x < o.max.x && min.y < o.max.y && max.x > o.min.x && max.y > o.min.y;
|
|
}
|
|
|
|
bool Contains(const Vector2 &v) const { return *this && v; }
|
|
bool Intersects(const AABB2 &v) const { return *this && v; }
|
|
|
|
void operator+=(const Vector2 &vec) {
|
|
if (vec.x < min.x)
|
|
min.x = vec.x;
|
|
if (vec.y < min.y)
|
|
min.y = vec.y;
|
|
if (vec.x > max.x)
|
|
max.x = vec.x;
|
|
if (vec.y > max.y)
|
|
max.y = vec.y;
|
|
}
|
|
|
|
void operator+=(const AABB2 &b) {
|
|
if (b.min.x < min.x)
|
|
min.x = b.min.x;
|
|
if (b.min.y < min.y)
|
|
min.y = b.min.y;
|
|
if (b.max.x > max.x)
|
|
max.x = b.max.x;
|
|
if (b.max.y > max.y)
|
|
max.y = b.max.y;
|
|
}
|
|
};
|
|
|
|
class OBB3;
|
|
|
|
class AABB3 {
|
|
public:
|
|
Vector3 min, max;
|
|
|
|
AABB3() {}
|
|
AABB3(Vector3 minVector, Vector3 maxVector) : min(minVector), max(maxVector) {}
|
|
|
|
AABB3(float minX, float minY, float minZ, float width, float height, float depth)
|
|
: min(Vector3::Make(minX, minY, minZ)),
|
|
max(Vector3::Make(minX + width, minY + height, minZ + depth)) {}
|
|
|
|
AABB3 Inflate(float amount) const {
|
|
return AABB3(min - Vector3::Make(amount, amount, amount),
|
|
max + Vector3::Make(amount, amount, amount));
|
|
}
|
|
|
|
float GetMinX() const { return min.x; }
|
|
float GetMaxX() const { return max.x; }
|
|
float GetMinY() const { return min.y; }
|
|
float GetMaxY() const { return max.y; }
|
|
float GetMinZ() const { return min.z; }
|
|
float GetMaxZ() const { return max.z; }
|
|
float GetWidth() const { return GetMaxX() - GetMinX(); }
|
|
float GetHeight() const { return GetMaxY() - GetMinY(); }
|
|
float GetDepth() const { return GetMaxZ() - GetMinZ(); }
|
|
|
|
operator OBB3() const;
|
|
|
|
bool operator&&(const Vector3 &v) const {
|
|
return v.x >= min.x && v.y >= min.y && v.z >= min.z && v.x < max.x && v.y < max.y &&
|
|
v.z < max.z;
|
|
}
|
|
|
|
bool operator&&(const AABB3 &o) const {
|
|
return min.x < o.max.x && min.y < o.max.y && min.z < o.max.z && max.x > o.min.x &&
|
|
max.y > o.min.y && max.z > o.min.z;
|
|
}
|
|
bool Contains(const Vector3 &v) const { return *this && v; }
|
|
bool Intersects(const AABB3 &v) const { return *this && v; }
|
|
bool Contains(const AABB3 &v) const {
|
|
return v.min.x >= min.x && v.min.y >= min.y && v.min.z >= min.z && v.max.x <= max.x &&
|
|
v.max.y <= max.y && v.max.z <= max.z;
|
|
}
|
|
|
|
void operator+=(const Vector3 &vec) {
|
|
if (vec.x < min.x)
|
|
min.x = vec.x;
|
|
if (vec.y < min.y)
|
|
min.y = vec.y;
|
|
if (vec.z < min.z)
|
|
min.z = vec.z;
|
|
if (vec.x > max.x)
|
|
max.x = vec.x;
|
|
if (vec.y > max.y)
|
|
max.y = vec.y;
|
|
if (vec.z > max.z)
|
|
max.z = vec.z;
|
|
}
|
|
|
|
void operator+=(const AABB3 &b) {
|
|
if (b.min.x < min.x)
|
|
min.x = b.min.x;
|
|
if (b.min.y < min.y)
|
|
min.y = b.min.y;
|
|
if (b.min.z < min.z)
|
|
min.z = b.min.z;
|
|
if (b.max.x > max.x)
|
|
max.x = b.max.x;
|
|
if (b.max.y > max.y)
|
|
max.y = b.max.y;
|
|
if (b.max.z > max.z)
|
|
max.z = b.max.z;
|
|
}
|
|
};
|
|
|
|
#pragma mark - Oriented Bounding Box
|
|
|
|
class OBB3 {
|
|
public:
|
|
/** matrix M where M * [x, y, z] = (coord in box)
|
|
* (0 <= x, y, z, <= 1) */
|
|
Matrix4 m;
|
|
|
|
OBB3() : m(Matrix4::Identity()) {}
|
|
OBB3(const Matrix4 &mm) : m(mm) {}
|
|
|
|
OBB3 operator*(const Matrix4 &mm) { return OBB3(m * mm); }
|
|
|
|
bool operator&&(const Vector3 &v) const;
|
|
float GetDistanceTo(const Vector3 &) const;
|
|
bool RayCast(Vector3 start, Vector3 dir, Vector3 *hitPos);
|
|
AABB3 GetBoundingAABB() const;
|
|
};
|
|
|
|
static inline OBB3 operator*(const Matrix4 &m, const OBB3 &b) { return OBB3(m * b.m); }
|
|
|
|
#pragma mark - Quaternion for Spatial Rotations
|
|
|
|
struct Quaternion {
|
|
Vector4 v; // i, j, k, (real)
|
|
explicit Quaternion(const Vector4 &v) : v(v) {}
|
|
|
|
public:
|
|
Quaternion() = default;
|
|
Quaternion(float i, float j, float k, float real) : v(i, j, k, real) {}
|
|
|
|
inline Quaternion Conjugate() const { return Quaternion(-v.x, -v.y, -v.z, v.w); }
|
|
|
|
inline Quaternion Normalize() const { return Quaternion(v.Normalize()); }
|
|
|
|
inline Quaternion operator*(const Quaternion &o) const {
|
|
const auto &a = v;
|
|
const auto &b = o.v;
|
|
return Quaternion(a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
|
|
a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x,
|
|
a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w,
|
|
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z);
|
|
}
|
|
|
|
inline Quaternion &operator*=(const Quaternion &o) {
|
|
*this = *this * o;
|
|
return *this;
|
|
}
|
|
|
|
/** Real power of quaternion |Q| = 1. */
|
|
inline Quaternion operator^(float r) const {
|
|
float theta = acosf(v.w) * r;
|
|
auto vv = v;
|
|
vv.w = 1.e-30f;
|
|
vv = vv.Normalize();
|
|
float newCos = cosf(theta);
|
|
float newSin = sinf(theta);
|
|
vv *= newSin;
|
|
vv.w = newCos;
|
|
return Quaternion(vv);
|
|
}
|
|
|
|
inline bool operator!=(const Quaternion &o) const { return v != o.v; }
|
|
|
|
inline Vector3 Apply(const Vector3 &v) const {
|
|
auto q = *this * Quaternion(v.x, v.y, v.z, 0.f) * Conjugate();
|
|
return Vector3(q.v.x, q.v.y, q.v.z);
|
|
}
|
|
|
|
/** Stores rotation quaternion into compact format for
|
|
* transmission. */
|
|
Vector3 EncodeRotation() const {
|
|
if (v.w > 0.f)
|
|
return Vector3(v.x, v.y, v.z);
|
|
else
|
|
return -Vector3(v.x, v.y, v.z);
|
|
}
|
|
static inline Quaternion DecodeRotation(Vector3 v) {
|
|
auto s = v.x * v.x + v.y * v.y + v.z * v.z;
|
|
return Quaternion(v.x, v.y, v.z, sqrtf(1.f - s));
|
|
}
|
|
|
|
/** Creates quaternion from rotation axis vector.
|
|
* @param axis Rotation axis vector of which length is radians. */
|
|
static inline Quaternion MakeRotation(const Vector3 &axis) {
|
|
auto ln = axis.GetLength();
|
|
auto norm = axis.Normalize();
|
|
auto c = cosf(ln * 0.5f), s = -sinf(ln * 0.5f);
|
|
norm *= s;
|
|
return Quaternion(norm.x, norm.y, norm.z, c);
|
|
}
|
|
|
|
inline Matrix4 ToRotationMatrix() const {
|
|
auto a = v.w, b = v.x, c = v.y, d = v.z;
|
|
auto aa = a * a, bb = b * b, cc = c * c, dd = d * d;
|
|
return Matrix4(aa + bb - cc - dd, 2.f * (b * c + a * d), 2.f * (b * d - a * c), 0.f,
|
|
|
|
2.f * (b * c - a * d), aa - bb + cc - dd, 2.f * (c * d + a * b), 0.f,
|
|
|
|
2.f * (b * d + a * c), 2.f * (c * d - a * b), aa - bb - cc + dd, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 1.f);
|
|
}
|
|
|
|
static inline Quaternion FromRotationMatrix(const Matrix4 &m, bool normalize = true) {
|
|
auto axis1 = m.GetAxis(0);
|
|
auto axis2 = m.GetAxis(1);
|
|
auto axis3 = m.GetAxis(2);
|
|
|
|
if (normalize) {
|
|
axis1 = axis1.Normalize();
|
|
axis2 = axis2.Normalize();
|
|
axis3 = axis3.Normalize();
|
|
}
|
|
|
|
auto trace = axis1.x + axis2.y + axis3.z + 1.f;
|
|
auto trace2 = axis1.x - axis2.y - axis3.z + 1.f;
|
|
if (trace > trace2) {
|
|
auto w = 0.5f * sqrtf(trace);
|
|
auto s = 0.25f / w;
|
|
return Quaternion(s * (axis2.z - axis3.y), s * (axis3.x - axis1.z),
|
|
s * (axis1.y - axis2.x), w);
|
|
} else {
|
|
auto w = 0.5f * sqrtf(trace2);
|
|
auto s = 0.25f / w;
|
|
return Quaternion(w, s * (axis1.y + axis2.x), s * (axis3.x + axis1.z),
|
|
s * (axis2.z - axis3.y));
|
|
}
|
|
}
|
|
};
|
|
|
|
#pragma mark - Utilities
|
|
|
|
template <typename T> static inline void FastErase(std::vector<T> &vec, size_t index) {
|
|
SPAssert(index < vec.size());
|
|
if (index < vec.size() - 1) {
|
|
vec[index] = vec[vec.size() - 1];
|
|
}
|
|
vec.resize(vec.size() - 1);
|
|
}
|
|
|
|
float Mix(float a, float b, float frac);
|
|
Vector2 Mix(const Vector2 &a, const Vector2 &b, float frac);
|
|
Vector3 Mix(const Vector3 &a, const Vector3 &b, float frac);
|
|
|
|
/** @return true if any portion of the box is in the positive side of plane. */
|
|
bool PlaneCullTest(const Plane3 &, const AABB3 &);
|
|
|
|
std::string Replace(const std::string &text, const std::string &before,
|
|
const std::string &after);
|
|
|
|
bool EqualsIgnoringCase(const std::string &, const std::string &);
|
|
|
|
std::vector<std::string> Split(const std::string &, const std::string &sep);
|
|
|
|
std::vector<std::string> SplitIntoLines(const std::string &);
|
|
std::string EscapeControlCharacters(const std::string &str);
|
|
|
|
uint32_t GetCodePointFromUTF8String(const std::string &, size_t start = 0,
|
|
size_t *outNumBytes = nullptr);
|
|
template <typename Iterator> static Iterator CodePointToUTF8(Iterator output, uint32_t cp) {
|
|
if (cp < 0x80) {
|
|
*(output++) = static_cast<char>(cp);
|
|
} else if (cp < 0x800) {
|
|
*(output++) = static_cast<char>((cp >> 6) | 0xc0);
|
|
*(output++) = static_cast<char>((cp & 0x3f) | 0x80);
|
|
} else if (cp < 0x10000) {
|
|
*(output++) = static_cast<char>((cp >> 12) | 0xe0);
|
|
*(output++) = static_cast<char>(((cp >> 6) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>((cp & 0x3f) | 0x80);
|
|
} else if (cp < 0x200000) {
|
|
*(output++) = static_cast<char>((cp >> 18) | 0xf0);
|
|
*(output++) = static_cast<char>(((cp >> 12) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 6) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>((cp & 0x3f) | 0x80);
|
|
} else if (cp < 0x4000000) {
|
|
*(output++) = static_cast<char>((cp >> 24) | 0xf8);
|
|
*(output++) = static_cast<char>(((cp >> 18) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 12) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 6) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>((cp & 0x3f) | 0x80);
|
|
} else {
|
|
*(output++) = static_cast<char>((cp >> 30) | 0xfc);
|
|
*(output++) = static_cast<char>(((cp >> 24) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 18) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 12) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>(((cp >> 6) & 0x3f) | 0x80);
|
|
*(output++) = static_cast<char>((cp & 0x3f) | 0x80);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
std::string TrimSpaces(const std::string &);
|
|
|
|
float SmoothStep(float);
|
|
}
|
|
|
|
namespace std {
|
|
template <> struct hash<::spades::IntVector3> {
|
|
using argument_type = spades::IntVector3;
|
|
using result_type = std::size_t;
|
|
result_type operator()(argument_type const& s) const {
|
|
result_type result = std::hash<int>{}(s.x);
|
|
result ^= result >> 8;
|
|
result += std::hash<int>{}(s.y) * 114;
|
|
result ^= result >> 10;
|
|
result += std::hash<int>{}(s.z) * 514;
|
|
return result;
|
|
}
|
|
};
|
|
}
|