openspades/Sources/Draw/GLProfiler.cpp
2017-01-08 17:54:47 +09:00

567 lines
15 KiB
C++

/*
Copyright (c) 2013 yvt
This file is part of OpenSpades.
OpenSpades is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenSpades is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenSpades. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <chrono>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <functional>
#include <list>
#include <unordered_map>
#include <cstring>
#include "GLProfiler.h"
#include "GLRenderer.h"
#include "GLSettings.h"
#include "IGLDevice.h"
#include <Core/Debug.h>
#include <Core/Settings.h>
#include <Core/TMPUtils.h>
namespace chrono = std::chrono;
namespace spades {
namespace draw {
namespace {
chrono::high_resolution_clock::time_point startTimePoint;
void ResetTimes() { startTimePoint = chrono::high_resolution_clock::now(); }
double GetWallClockTime() {
return chrono::duration_cast<chrono::microseconds>(
chrono::high_resolution_clock::now() - startTimePoint)
.count() /
1000000.0;
}
}
struct GLProfiler::Measurement {
double totalWallClockTime = 0.0;
double totalGPUTime = 0.0;
int totalNumFrames = 0;
};
struct GLProfiler::Phase {
const std::string name;
std::string description;
// can't use vector here; a reference to a vector's element can be invalidated
std::list<Phase> subphases;
/** Looks up a subphase by its name. */
std::unordered_map<std::string, std::reference_wrapper<Phase>> subphaseMap;
double startWallClockTime;
stmp::optional<std::pair<std::size_t, std::size_t>> queryObjectIndices;
Measurement measurementLatest;
bool measured = false;
stmp::optional<Measurement> measurementSaved;
Phase(const std::string &name) : name{name} {}
};
GLProfiler::GLProfiler(GLRenderer &renderer)
: m_settings{renderer.GetSettings()},
m_renderer{renderer},
m_device{*renderer.GetGLDevice()},
m_active{false},
m_lastSaveTime{0.0},
m_shouldSaveThisFrame{false},
m_waitingTimerQueryResult{false} {
SPADES_MARK_FUNCTION();
m_font = m_renderer.RegisterImage("Gfx/Fonts/Debug.png");
m_white = m_renderer.RegisterImage("Gfx/White.tga");
}
GLProfiler::~GLProfiler() {
SPADES_MARK_FUNCTION();
for (IGLDevice::UInteger timerQueryObject : m_timerQueryObjects) {
m_device.DeleteQuery(timerQueryObject);
}
}
void GLProfiler::BeginFrame() {
SPADES_MARK_FUNCTION();
if (!m_settings.r_debugTiming) {
// Clear history
m_root.reset();
m_waitingTimerQueryResult = false;
return;
}
if (m_waitingTimerQueryResult) {
FinalizeMeasurement();
// Still waiting?
if (m_waitingTimerQueryResult) {
return;
}
}
SPAssert(m_stack.empty());
SPAssert(!m_active);
m_active = true;
if (m_settings.r_debugTimingAverage) {
m_shouldSaveThisFrame = m_stopwatch.GetTime() > m_lastSaveTime + 1.0;
} else {
m_shouldSaveThisFrame = true;
}
ResetTimes();
if (m_settings.r_debugTimingGPUTime) {
m_currentTimerQueryObjectIndex = 0;
if (m_timerQueryObjects.empty()) {
m_timerQueryObjects.push_back(m_device.GenQuery());
}
m_device.BeginQuery(IGLDevice::TimeElapsed, m_timerQueryObjects[0]);
}
if (m_root) {
struct Traverser {
GLProfiler &self;
Traverser(GLProfiler &self) : self{self} {}
void Traverse(Phase &phase) {
phase.measured = false;
phase.queryObjectIndices.reset();
for (Phase &subphase : phase.subphases) {
Traverse(subphase);
}
}
};
Traverser{*this}.Traverse(*m_root);
}
if (!m_root) {
m_root.reset(new Phase{"Frame"});
m_root->description = "Frame";
}
BeginPhaseInner(*m_root);
m_stack.emplace_back(*m_root);
}
void GLProfiler::EndFrame() {
SPADES_MARK_FUNCTION();
if (!m_active) {
return;
}
SPAssert(m_stack.size() == 1);
SPAssert(&GetCurrentPhase() == m_root.get());
EndPhaseInner();
SPAssert(m_stack.empty());
m_active = false;
FinalizeMeasurement();
}
void GLProfiler::FinalizeMeasurement() {
SPADES_MARK_FUNCTION();
Phase &root = *m_root;
// Collect GPU time information
if (m_settings.r_debugTimingGPUTime) {
if (!m_waitingTimerQueryResult) {
m_device.EndQuery(IGLDevice::TimeElapsed);
}
m_waitingTimerQueryResult = false;
// are results available?
for (std::size_t i = 0; i <= m_currentTimerQueryObjectIndex; ++i) {
if (!m_device.GetQueryObjectUInteger(m_timerQueryObjects[i],
IGLDevice::QueryResultAvailable)) {
m_waitingTimerQueryResult = true;
return;
}
}
double t = 0;
m_timerQueryTimes.resize(m_currentTimerQueryObjectIndex + 2);
m_timerQueryTimes[0] = 0.0;
for (std::size_t i = 0; i <= m_currentTimerQueryObjectIndex; ++i) {
auto nanoseconds = m_device.GetQueryObjectUInteger64(m_timerQueryObjects.at(i),
IGLDevice::QueryResult);
t += static_cast<double>(nanoseconds) / 1.0e+9;
m_timerQueryTimes[i + 1] = t;
}
struct Traverser {
GLProfiler &self;
Traverser(GLProfiler &self) : self{self} {}
void Traverse(Phase &phase) {
if (phase.queryObjectIndices) {
auto indices = *phase.queryObjectIndices;
double time1 = self.m_timerQueryTimes.at(indices.first);
double time2 = self.m_timerQueryTimes.at(indices.second);
phase.measurementLatest.totalGPUTime += time2 - time1;
}
for (Phase &subphase : phase.subphases) {
Traverse(subphase);
}
}
};
Traverser{*this}.Traverse(root);
} else {
m_waitingTimerQueryResult = false;
}
if (m_shouldSaveThisFrame) {
struct Traverser {
GLProfiler &self;
Traverser(GLProfiler &self) : self{self} {}
void Traverse(Phase &phase) {
phase.measurementSaved = phase.measurementLatest;
phase.measurementLatest = Measurement{};
for (Phase &subphase : phase.subphases) {
Traverse(subphase);
}
}
};
Traverser{*this}.Traverse(root);
m_lastSaveTime = m_stopwatch.GetTime();
// Output the result to the system log
if (m_settings.r_debugTimingOutputLog) {
LogResult(root);
}
}
}
void GLProfiler::NewTimerQuery() {
SPADES_MARK_FUNCTION_DEBUG();
m_device.EndQuery(IGLDevice::TimeElapsed);
++m_currentTimerQueryObjectIndex;
if (m_currentTimerQueryObjectIndex >= m_timerQueryObjects.size()) {
m_timerQueryObjects.push_back(m_device.GenQuery());
}
m_device.BeginQuery(IGLDevice::TimeElapsed,
m_timerQueryObjects[m_currentTimerQueryObjectIndex]);
}
void GLProfiler::BeginPhase(const std::string &name, const std::string &description) {
SPADES_MARK_FUNCTION_DEBUG();
SPAssert(m_active);
Phase &current = GetCurrentPhase();
// Look up existing Phase object (only when r_debugTimingAverage != 0)
auto it = current.subphaseMap.find(name);
if (it == current.subphaseMap.end()) {
// Create a new subphase
auto subphasesIt = current.subphases.emplace(current.subphases.end(), name);
auto insertResult = current.subphaseMap.emplace(name, std::ref(*subphasesIt));
SPAssert(insertResult.second);
it = insertResult.first;
}
Phase &next = it->second;
m_stack.emplace_back(next);
if (next.measured) {
SPRaise("Cannot measure the timing of phase '%s' twice", name.c_str());
}
next.measured = true;
next.description = description;
BeginPhaseInner(next);
}
void GLProfiler::BeginPhaseInner(Phase &phase) {
SPADES_MARK_FUNCTION_DEBUG();
phase.startWallClockTime = GetWallClockTime();
if (m_settings.r_debugTimingGPUTime) {
NewTimerQuery();
phase.queryObjectIndices = std::pair<std::size_t, std::size_t>{};
(*phase.queryObjectIndices).first = m_currentTimerQueryObjectIndex;
(*phase.queryObjectIndices).second = static_cast<std::size_t>(-1);
}
}
void GLProfiler::EndPhase() {
SPADES_MARK_FUNCTION_DEBUG();
SPAssert(m_active);
SPAssert(m_stack.size() > 1);
EndPhaseInner();
}
void GLProfiler::EndPhaseInner() {
SPADES_MARK_FUNCTION_DEBUG();
SPAssert(!m_stack.empty());
Phase &current = GetCurrentPhase();
double wallClockTime = GetWallClockTime();
current.measurementLatest.totalWallClockTime +=
wallClockTime - current.startWallClockTime;
current.measurementLatest.totalNumFrames += 1;
if (m_settings.r_debugTimingGPUTime) {
SPAssert(current.queryObjectIndices);
NewTimerQuery();
(*current.queryObjectIndices).second = m_currentTimerQueryObjectIndex;
}
m_stack.pop_back();
}
void GLProfiler::LogResult(Phase &root) {
if (!root.measurementSaved) {
// No results yet
return;
}
double factor = 1.0 / (*root.measurementSaved).totalNumFrames;
SPLog("---- Start of GLProfiler Result ----");
SPLog("(%d sampled frame(s). Showing the per-frame timing)",
(*root.measurementSaved).totalNumFrames);
if (m_settings.r_debugTimingGPUTime) {
SPLog("(GPU time / wall clock time)");
} else {
SPLog("(wall clock time)");
}
struct Traverser {
GLProfiler &self;
double factor;
char buf[512];
Traverser(GLProfiler &self, double factor) : self{self}, factor{factor} {}
void Traverse(Phase &phase, int level) {
if (!phase.measurementSaved) {
// No results yet
return;
}
Measurement &result = *phase.measurementSaved;
int indent = level * 2;
for (int i = 0; i < indent; i++)
buf[i] = ' ';
buf[511] = 0;
if (self.m_settings.r_debugTimingGPUTime) {
std::snprintf(buf + indent, 511 - indent, "%s - %.3fms / %.3fms",
phase.description.c_str(),
result.totalGPUTime * 1000. * factor,
result.totalWallClockTime * 1000. * factor);
} else {
std::snprintf(buf + indent, 511 - indent, "%s - %.3fms",
phase.description.c_str(),
result.totalWallClockTime * 1000. * factor);
}
SPLog("%s", buf);
for (Phase &subphase : phase.subphases) {
Traverse(subphase, level + 1);
}
}
};
Traverser{*this, factor}.Traverse(root, 0);
SPLog("---- End of GLProfiler Result ----");
}
void GLProfiler::DrawResult() {
if (m_root) {
DrawResult(*m_root);
}
}
void GLProfiler::DrawResult(Phase &root) {
if (!root.measurementSaved) {
// No results yet
return;
}
double factor = 1.0 / (*root.measurementSaved).totalNumFrames;
struct ResultRenderer {
GLProfiler &self;
GLRenderer &renderer;
bool gpu;
double factor;
char buf[512];
Vector2 cursor{0.0f, 0.0f};
int column = 0;
ResultRenderer(GLProfiler &self, double factor)
: self{self},
renderer{self.m_renderer},
gpu{self.m_settings.r_debugTimingGPUTime},
factor{factor} {}
void DrawText(const char *str) {
client::IImage *font = self.m_font;
while (*str) {
char c = *str;
if (c == '\n') {
cursor.y += 10.0f;
if (cursor.y + 10.0f > renderer.ScreenHeight()) {
cursor.y = 0.0f;
++column;
}
cursor.x = column * 500.0f;
} else {
int col = c & 15;
int row = (c >> 4) - 2;
renderer.DrawImage(font, cursor,
AABB2{col * 6.0f, row * 10.0f, 6.0f, 10.0f});
cursor.x += 6.0f;
}
++str;
}
}
void Traverse(Phase &phase, int level) {
if (!phase.measurementSaved) {
// No results yet
return;
}
Measurement &result = *phase.measurementSaved;
double time = (gpu ? result.totalGPUTime : result.totalWallClockTime) * factor;
// draw text
if (result.totalNumFrames > 0) {
renderer.SetColorAlphaPremultiplied(Vector4{1.0f, 1.0f, 1.0f, 1.0f});
} else {
renderer.SetColorAlphaPremultiplied(Vector4{0.5f, 0.5f, 0.5f, 1.0f});
}
int indent = level * 2;
int timeColumn = 30;
for (int i = 0; i < indent; i++)
buf[i] = ' ';
std::fill(buf, buf + timeColumn, ' ');
std::strcpy(buf + indent, phase.description.c_str());
buf[std::strlen(buf)] = ' ';
std::sprintf(buf + timeColumn, "%7.3fms", time * 1000.);
DrawText(buf);
float subphaseTime = 0.0f;
for (Phase &subphase : phase.subphases) {
if (!subphase.measurementSaved) {
continue;
}
Measurement &subresult = *subphase.measurementSaved;
subphaseTime +=
(gpu ? subresult.totalGPUTime : subresult.totalWallClockTime) * factor;
}
// draw bar
float barScale = 4000.0 * self.m_settings.r_debugTimingOutputBarScale;
float boxWidth = static_cast<float>(time * barScale);
float childBoxWidth = static_cast<float>(subphaseTime * barScale);
client::IImage *white = self.m_white;
renderer.SetColorAlphaPremultiplied(Vector4{0.0f, 0.0f, 0.0f, 0.5f});
renderer.DrawImage(white, AABB2{cursor.x, cursor.y + 1.0f, boxWidth, 8.0f});
renderer.SetColorAlphaPremultiplied(Vector4{0.0f, 1.0f, 0.0f, 1.0f});
renderer.DrawImage(white, AABB2{cursor.x, cursor.y + 3.0f, boxWidth, 4.0f});
renderer.SetColorAlphaPremultiplied(Vector4{1.0f, 0.0f, 0.0f, 1.0f});
renderer.DrawImage(
white, AABB2{cursor.x, cursor.y + 3.0f, boxWidth - childBoxWidth, 4.0f});
DrawText("\n");
for (Phase &subphase : phase.subphases) {
Traverse(subphase, level + 1);
}
}
void Draw(Phase &root) {
renderer.SetColorAlphaPremultiplied(Vector4{1.0f, 1.0f, 0.0f, 1.0f});
DrawText("[GLProfiler result] ");
std::sprintf(buf, "%d sampled frame(s). Showing the per-frame timing.\n",
(*root.measurementSaved).totalNumFrames);
DrawText(buf);
DrawText("Legends: ");
DrawText(gpu ? "GPU time" : "wall clock time");
renderer.SetColorAlphaPremultiplied(Vector4{1.0f, 0.0f, 0.0f, 1.0f});
DrawText(" Self");
renderer.SetColorAlphaPremultiplied(Vector4{0.0f, 1.0f, 0.0f, 1.0f});
DrawText(" Total\n");
Traverse(root, 0);
}
};
ResultRenderer{*this, factor}.Draw(root);
}
GLProfiler::Context::Context(GLProfiler &profiler, const char *format, ...)
: m_profiler{profiler}, m_active{false} {
SPADES_MARK_FUNCTION_DEBUG();
if (!profiler.m_active) {
return;
}
m_active = true;
char buf[2048];
va_list va;
va_start(va, format);
buf[2047] = 0;
std::vsnprintf(buf, 2047, format, va);
va_end(va);
profiler.BeginPhase(format, buf);
}
GLProfiler::Context::~Context() {
SPADES_MARK_FUNCTION_DEBUG();
if (!m_active) {
return;
}
m_profiler.EndPhase();
}
}
}