voxelands/src/collision.cpp

521 lines
14 KiB
C++

/************************************************************************
* Minetest-c55
* Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
*
* collision.cpp
* voxelands - 3d voxel world sandbox game
* Copyright (C) Lisa 'darkrose' Milne 2014 <lisa@ltmnet.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*
* License updated from GPLv2 or later to GPLv3 or later by Lisa Milne
* for Voxelands.
************************************************************************/
#include "collision.h"
#include "mapblock.h"
#include "map.h"
#include "log.h"
#include "main.h" // g_profiler
#include "profiler.h"
#include "content_mapnode.h"
// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
int axisAlignedCollision(
const aabb3f &staticbox, const aabb3f &movingbox,
const v3f &speed, f32 d, f32 &dtime)
{
//TimeTaker tt("axisAlignedCollision");
f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X);
f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y);
f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z);
aabb3f relbox(
movingbox.MinEdge.X - staticbox.MinEdge.X,
movingbox.MinEdge.Y - staticbox.MinEdge.Y,
movingbox.MinEdge.Z - staticbox.MinEdge.Z,
movingbox.MaxEdge.X - staticbox.MinEdge.X,
movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
movingbox.MaxEdge.Z - staticbox.MinEdge.Z
);
if(speed.X > 0) // Check for collision with X- plane
{
if(relbox.MaxEdge.X <= d)
{
dtime = - relbox.MaxEdge.X / speed.X;
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 0;
}
else if(relbox.MinEdge.X > xsize)
{
return -1;
}
}
else if(speed.X < 0) // Check for collision with X+ plane
{
if(relbox.MinEdge.X >= xsize - d)
{
dtime = (xsize - relbox.MinEdge.X) / speed.X;
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 0;
}
else if(relbox.MaxEdge.X < 0)
{
return -1;
}
}
// NO else if here
if(speed.Y > 0) // Check for collision with Y- plane
{
if(relbox.MaxEdge.Y <= d)
{
dtime = - relbox.MaxEdge.Y / speed.Y;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 1;
}
else if(relbox.MinEdge.Y > ysize)
{
return -1;
}
}
else if(speed.Y < 0) // Check for collision with Y+ plane
{
if(relbox.MinEdge.Y >= ysize - d)
{
dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 1;
}
else if(relbox.MaxEdge.Y < 0)
{
return -1;
}
}
// NO else if here
if(speed.Z > 0) // Check for collision with Z- plane
{
if(relbox.MaxEdge.Z <= d)
{
dtime = - relbox.MaxEdge.Z / speed.Z;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
return 2;
}
//else if(relbox.MinEdge.Z > zsize)
//{
// return -1;
//}
}
else if(speed.Z < 0) // Check for collision with Z+ plane
{
if(relbox.MinEdge.Z >= zsize - d)
{
dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
return 2;
}
//else if(relbox.MaxEdge.Z < 0)
//{
// return -1;
//}
}
return -1;
}
// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
const std::vector<aabb3f> &staticboxes,
const aabb3f &movingbox,
f32 y_increase, f32 d)
{
//TimeTaker tt("wouldCollideWithCeiling");
assert(y_increase >= 0);
for(std::vector<aabb3f>::const_iterator
i = staticboxes.begin();
i != staticboxes.end(); i++)
{
const aabb3f& staticbox = *i;
if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
return true;
}
return false;
}
collisionMoveResult collisionMoveSimple(Map *map,
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f &pos_f, v3f &speed_f, v3f &accel_f)
{
//TimeTaker tt("collisionMoveSimple");
ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
collisionMoveResult result;
/*
Calculate new velocity
*/
if (dtime > 0.5) {
infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl;
dtime = 0.5;
}
speed_f += accel_f * dtime;
// If there is no speed, there are no collisions
if (speed_f.getLength() == 0)
return result;
// Limit speed for avoiding hangs
speed_f.Y = rangelim(speed_f.Y,-5000,5000);
speed_f.X = rangelim(speed_f.X,-5000,5000);
speed_f.Z = rangelim(speed_f.Z,-5000,5000);
/*
Collect node boxes in movement range
*/
std::vector<aabb3f> cboxes;
std::vector<bool> is_unloaded;
std::vector<bool> is_step_up;
std::vector<bool> is_object;
std::vector<v3s16> node_positions;
{
//TimeTaker tt2("collisionMoveSimple collect boxes");
ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
v3s16 oldpos_i = floatToInt(pos_f, BS);
v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
for (s16 x = min_x; x <= max_x; x++) {
for (s16 y = min_y; y <= max_y; y++) {
for (s16 z = min_z; z <= max_z; z++) {
v3s16 p(x,y,z);
bool pos_ok;
// Object collides into walkable nodes
MapNode n = map->getNodeNoEx(p,&pos_ok);
if (!pos_ok) {
// Collide with unloaded nodes
aabb3f box = getNodeBox(p, BS);
cboxes.push_back(box);
is_unloaded.push_back(true);
is_step_up.push_back(false);
node_positions.push_back(p);
is_object.push_back(false);
continue;
}
const ContentFeatures &f = content_features(n);
if(f.walkable == false)
continue;
std::vector<NodeBox> nodeboxes = f.getNodeBoxes(n);
#ifndef SERVER
if (f.draw_type == CDT_FENCELIKE || f.draw_type == CDT_WALLLIKE) {
static const int boxcheck[4][2] = {
{0,2},
{0,3},
{1,2},
{1,3}
};
nodeboxes = content_features(CONTENT_STONE_WALL).getNodeBoxes(n);
int bps = ((nodeboxes.size()-2)/4); // boxes per section
u8 np = 1;
{
aabb3f box = nodeboxes[0].m_box;
box.MinEdge += v3f(x, y, z)*BS;
if (f.jumpable == false)
box.MaxEdge.Y = 1.0*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
node_positions.push_back(p);
is_object.push_back(false);
}
for (int k=0; k<8; k++) {
if ((n.param2&(np<<k)) == 0)
continue;
if (k > 3) {
for (int j=0; j<2; j++) {
for (int i=0; i<bps; i++) {
aabb3f box = nodeboxes[i+2+(bps*boxcheck[k%4][j])].m_box;
box.MinEdge += v3f(x, y, z)*BS;
if (f.jumpable == false)
box.MaxEdge.Y = 1.0*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
node_positions.push_back(p);
is_object.push_back(false);
}
}
}else{
for (int i=0; i<bps; i++) {
aabb3f box = nodeboxes[i+2+(bps*(k%4))].m_box;
box.MinEdge += v3f(x, y, z)*BS;
if (f.jumpable == false)
box.MaxEdge.Y = 1.0*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
node_positions.push_back(p);
is_object.push_back(false);
}
}
}
nodeboxes.clear();
}else
#endif
{
/* TODO: obb for rotated nodeboxes */
for (std::vector<NodeBox>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); i++) {
aabb3f box = (*i).m_box;
box.MinEdge += v3f(x, y, z)*BS;
if (f.jumpable == false)
box.MaxEdge.Y = 1.0*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
node_positions.push_back(p);
is_object.push_back(false);
}
nodeboxes.clear();
}
}
}
}
} // tt2
assert(cboxes.size() == is_unloaded.size());
assert(cboxes.size() == is_step_up.size());
assert(cboxes.size() == node_positions.size());
assert(cboxes.size() == is_object.size());
/*
Collision detection
*/
/*
Collision uncertainty radius
Make it a bit larger than the maximum distance of movement
*/
f32 d = pos_max_d * 1.1;
// This should always apply, otherwise there are glitches
assert(d > pos_max_d);
int loopcount = 0;
while (dtime > 0.00001) {
//TimeTaker tt3("collisionMoveSimple dtime loop");
ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
// Avoid infinite loop
loopcount++;
if (loopcount >= 100) {
infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl;
dtime = 0;
break;
}
aabb3f movingbox = box_0;
movingbox.MinEdge += pos_f;
movingbox.MaxEdge += pos_f;
int nearest_collided = -1;
f32 nearest_dtime = dtime;
u32 nearest_boxindex = -1;
/*
Go through every nodebox, find nearest collision
*/
for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
// Ignore if already stepped up this nodebox.
if (is_step_up[boxindex])
continue;
// Find nearest collision of the two boxes (raytracing-like)
f32 dtime_tmp;
int collided = axisAlignedCollision(
cboxes[boxindex],
movingbox,
speed_f,
d,
dtime_tmp
);
if (collided == -1 || dtime_tmp >= nearest_dtime)
continue;
nearest_dtime = dtime_tmp;
nearest_collided = collided;
nearest_boxindex = boxindex;
}
if (nearest_collided == -1) {
// No collision with any collision box.
pos_f += speed_f * dtime;
dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers
}else{
// Otherwise, a collision occurred.
const aabb3f& cbox = cboxes[nearest_boxindex];
// Check for stairs.
bool step_up = (nearest_collided != 1) && // must not be Y direction
(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
(!wouldCollideWithCeiling(cboxes, movingbox,
cbox.MaxEdge.Y - movingbox.MinEdge.Y,
d));
// Move to the point of collision and reduce dtime by nearest_dtime
if (nearest_dtime < 0) {
// Handle negative nearest_dtime (can be caused by the d allowance)
if (!step_up) {
if (nearest_collided == 0)
pos_f.X += speed_f.X * nearest_dtime;
if (nearest_collided == 1)
pos_f.Y += speed_f.Y * nearest_dtime;
if (nearest_collided == 2)
pos_f.Z += speed_f.Z * nearest_dtime;
}
}else{
pos_f += speed_f * nearest_dtime;
dtime -= nearest_dtime;
}
bool is_collision = true;
if (is_unloaded[nearest_boxindex])
is_collision = false;
CollisionInfo info;
info.node_p = node_positions[nearest_boxindex];
info.old_speed = speed_f;
// Set the speed component that caused the collision to zero
if (step_up) {
// Special case: Handle stairs
is_step_up[nearest_boxindex] = true;
is_collision = false;
}else{
switch (nearest_collided) {
case 0:
speed_f.X = 0;
result.collides = true;
result.collides_xz = true;
break;
case 1:
speed_f.Y = 0;
result.collides = true;
break;
case 2:
speed_f.Z = 0;
result.collides = true;
result.collides_xz = true;
break;
default:;
}
info.new_speed = speed_f;
if (is_collision && info.new_speed.getDistanceFrom(info.old_speed) >= 0.1*BS)
result.collisions.push_back(info);
}
}
}
/*
Final touches: Check if standing on ground, step up stairs.
*/
aabb3f box = box_0;
box.MinEdge += pos_f;
box.MaxEdge += pos_f;
for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
const aabb3f& cbox = cboxes[boxindex];
/*
See if the object is touching ground.
Object touches ground if object's minimum Y is near node's
maximum Y and object's X-Z-area overlaps with the node's
X-Z-area.
Use 0.15*BS so that it is easier to get on a node.
*/
if (
cbox.MaxEdge.X-d > box.MinEdge.X &&
cbox.MinEdge.X+d < box.MaxEdge.X &&
cbox.MaxEdge.Z-d > box.MinEdge.Z &&
cbox.MinEdge.Z+d < box.MaxEdge.Z
) {
if (is_step_up[boxindex]) {
pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
box = box_0;
box.MinEdge += pos_f;
box.MaxEdge += pos_f;
}
if (fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS) {
result.touching_ground = true;
if (is_unloaded[boxindex])
result.standing_on_unloaded = true;
}
}
}
return result;
}