Add a basic implementation of genetic algorithm

This commit is contained in:
Muhammad Rifqi Priyo Susanto 2020-08-20 14:00:00 +07:00
parent 5f76ab9935
commit 01ffbbb7b9

View File

@ -0,0 +1,183 @@
<!DOCTYPE html>
<html>
<head>
<title>Genetic Algorithm - Experiments - srifqi</title>
<meta charset="utf-8">
<meta name="author" content="srifqi">
<meta name="description" content="An example of genetic algorithm in action">
<meta name="viewport" content="width=device-width,height=device-height,initial-scale=1">
<style>
body {
font: 16px sans-serif;
overflow-x: hidden;
overflow-y: scroll;
text-align: center;
}
pre {
font: 12px monospace;
line-height: 150%;
}
#canvas {
height: 200px;
width: 500px;
}
.p {
text-decoration: underline;
}
.p, .q {
background: lightgreen;
color: green;
}
.d {
background: pink;
color: red;
}
</style>
</head>
<body>
<h1 id="title">Hello, World!</h1>
<p>An example of genetic algorithm in action</p>
<pre id="con"></pre>
<canvas id="canvas" width=500 height=200></canvas>
<script>
const POPULATION_SIZE = 25;
const POPULATION = new Array(POPULATION_SIZE);
const POPULATION_HISTORY = [];
const POPULATION_HISTORY_SAMPLE = 25;
const BLOCKS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 ,.!?";
const TARGET = "Hello, World!";
let GENERATION_NUM = 0;
const GENERATION_LIMIT = 500;
const a = canvas.getContext("2d");
const GRAPH_WIDTH = 500;
const GRAPH_SIZE = 100;
const g_max = new Array(GRAPH_SIZE);
const randomString = (length) => {
let res = new Array(length);
for (let i = 0; i < length; i ++)
res[i] = randomInt(BLOCKS.length);
return res;
};
const randomInt = (max) => Math.round(Math.random() * max - 0.5);
const toChromosome = (text) => text.split("").map(x => BLOCKS.indexOf(x));
const toText = (chromosome) => chromosome.map(x => BLOCKS[x]).join("");
let sqrtPopu = Math.floor(Math.sqrt(POPULATION_SIZE));
function updateGUI() {
con.innerHTML = "generation #" + GENERATION_NUM + "\n";
for (let i = 0; i < POPULATION_SIZE; i ++)
con.innerHTML += toText(POPULATION[i]) +
(i % sqrtPopu == sqrtPopu - 1 ? "\n" : " ");
title.innerText = toText(POPULATION[0]);
a.clearRect(0, 0, 500, 200);
let graph_max = Math.max(...g_max);
let graph_min = Math.min(...g_max);
a.strokeStyle = "blue";
a.beginPath();
a.moveTo(0, 200 - (g_max[0] - graph_min) / (graph_max - graph_min) * 200);
for (let i = 1; i < GRAPH_SIZE; i ++)
a.lineTo(i / GRAPH_SIZE * GRAPH_WIDTH, 200 - (g_max[i] - graph_min) / (graph_max - graph_min) * 200);
a.stroke();
a.fillText(graph_max, 0, 20);
a.fillText(graph_min, 0, 190);
}
function updateGUILast() {
updateGUI();
if (GENERATION_NUM % POPULATION_HISTORY_SAMPLE != 0)
POPULATION_HISTORY.push([GENERATION_NUM, POPULATION.slice(0)]);
let con_buf = "";
for (let k = POPULATION_HISTORY.length - 1; k >= 0; k --) {
con_buf += "generation #" + POPULATION_HISTORY[k][0] + "<br>";
for (let i = 0; i < POPULATION_SIZE; i ++) {
let person = toText(POPULATION_HISTORY[k][1][i]);
if (person == TARGET)
con_buf += "<span class=\"p\">" + person + "</span>";
else
for (let c = 0; c < TARGET.length; c ++)
con_buf += "<span class=\"" +
(person[c] == TARGET[c] ? "q" : "d") +
"\">" + person[c] + "</span>";
con_buf += (i % sqrtPopu == sqrtPopu - 1 ? "<br>" : " ");
}
con_buf += "<br>";
}
con.innerHTML = con_buf;
}
function init() {
for (let i = 0; i < POPULATION_SIZE; i ++)
POPULATION[i] = randomString(TARGET.length);
POPULATION.sort((a, b) => fitness(b) - fitness(a));
for (let i = 0; i < GRAPH_SIZE; i ++)
g_max[i] = fitness(POPULATION[0]);
POPULATION_HISTORY.length = 0;
POPULATION_HISTORY.push([GENERATION_NUM, POPULATION.slice(0)]);
updateGUI();
}
function mutate(chromosome) {
if (Math.random() > 0.75)
return chromosome;
let pos = randomInt(chromosome.length);
let amount = randomInt(BLOCKS.length);
chromosome[pos] = (chromosome[pos] + amount) % BLOCKS.length;
return chromosome;
}
function crossover(parentA, parentB) {
let pos = randomInt(parentA.length);
let childA = parentA.slice(0, pos).concat(parentB.slice(pos, parentB.length));
let childB = parentB.slice(0, pos).concat(parentA.slice(pos, parentA.length));
return Math.random() < 0.5 ? childA : childB;
}
let TARGET_C = toChromosome(TARGET);
function fitness(chromosome) {
let error = 0;
for (let i = 0; i < chromosome.length; i ++)
error -= Math.pow(chromosome[i] - TARGET_C[i], 2);
return error;
}
function generate() {
let newP = new Array(POPULATION_SIZE);
const POPULATION_SIZE_HALF = Math.floor(POPULATION_SIZE / 2);
const POPULATION_SIZE_QUARTER = Math.floor(POPULATION_SIZE / 4);
for (let i = 0; i < POPULATION_SIZE; i ++) {
let parentA = POPULATION[Math.floor(i / POPULATION_SIZE_QUARTER)];
let parentB = POPULATION[i % POPULATION_SIZE_QUARTER];
// console.log(i, Math.floor(i / POPULATION_SIZE_QUARTER), i % POPULATION_SIZE_QUARTER);
newP[i] = crossover(parentA, parentB);
}
for (let i = 0; i < POPULATION_SIZE; i ++)
POPULATION[i] = mutate(newP[i]);
POPULATION.sort((a, b) => fitness(b) - fitness(a));
g_max.shift();
g_max.push(fitness(POPULATION[0]));
GENERATION_NUM ++;
if (GENERATION_NUM % POPULATION_HISTORY_SAMPLE == 0)
POPULATION_HISTORY.push([GENERATION_NUM, POPULATION.slice(0)]);
updateGUI();
}
init();
let runner = setInterval(() => {
if (title.innerText == TARGET || GENERATION_NUM >= GENERATION_LIMIT) {
clearInterval(runner);
updateGUILast();
if (GENERATION_NUM >= GENERATION_LIMIT)
title.innerHTML += "<br><small>(aborted; too long)</small>";
} else {
generate();
}
}, 10);
</script>
</body>
</html>