mcserver/source/cFluidSimulator.cpp

693 lines
16 KiB
C++
Raw Blame History

#include "Globals.h"
#include <set>
#include <queue>
#include "cFluidSimulator.h"
#include "cWorld.h"
#include "Vector3i.h"
#include "BlockID.h"
#include "Defines.h"
#include "cItem.h"
#include "blocks/Block.h"
//#define DEBUG_FLUID
#ifdef DEBUG_FLUID
#define LOG_FLUID(...) LOGWARN( __VA_ARGS__ )
#else
#define LOG_FLUID(...)
#endif
class cFluidSimulator::FluidData
{
public:
FluidData( cWorld* a_World, cFluidSimulator *a_Simulator )
: m_ActiveFluid( new std::set < Vector3i >() )
, m_Simulator (a_Simulator)
, m_Buffer( new std::set< Vector3i >() )
, m_World( a_World )
{}
~FluidData()
{
delete m_Buffer;
delete m_ActiveFluid;
}
void UpdateWave(Vector3i a_LeftCorner, Vector3i a_CurBlock)
{
Vector3i LevelPoints [] = {
Vector3i( a_CurBlock.x-1, a_CurBlock.y, a_CurBlock.z ),
Vector3i( a_CurBlock.x+1, a_CurBlock.y, a_CurBlock.z ),
Vector3i( a_CurBlock.x, a_CurBlock.y, a_CurBlock.z-1 ),
Vector3i( a_CurBlock.x, a_CurBlock.y, a_CurBlock.z+1 ),
};
for(int i=0; i<4; i++)
{
Vector3i cur = LevelPoints[i];
switch(m_Relief[cur.x][cur.z])
{
case E_HOLE:
{
m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z];
m_CurResult|=m_StartSide[cur.x][cur.z];
m_NearestHole = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1;
LOG_FLUID("Hole found: %d \t curResult: %d", int(m_StartSide[cur.x][cur.z]), int(m_CurResult) );
LOG_FLUID("Coordinates: (%d, %d)", cur.x, cur.z);
}break;
case E_BLOCK:
{}break;
case E_PLAIN:
{
if (m_WayLength[cur.x][cur.z] > m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1)
{
m_WayLength[cur.x][cur.z] = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1;
m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z];
m_WaveQueue.push(cur);
}
else if(m_WayLength[cur.x][cur.z] == m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1)
{
m_StartSide[cur.x][cur.z] |= m_StartSide[a_CurBlock.x][a_CurBlock.z];
}
LOG_FLUID("Plain step: (%d, %d) from %d", cur.x, cur.z, m_StartSide[cur.x][cur.z]);
}
}
}
}
std::vector< Vector3i > GetLowestPoints( int a_X, int a_Y, int a_Z )
{
std::vector< Vector3i > Points; //result
Vector3i CornerGlobal(a_X - AREA_WIDTH/2, a_Y, a_Z - AREA_WIDTH/2);
//TODO: rewrite without relief, get blocks directly in algorithm
for(int x=0; x<AREA_WIDTH; x++)
{
for(int z=0; z<AREA_WIDTH; z++)
{
char UpperBlock = m_World->GetBlock( CornerGlobal.x + x, CornerGlobal.y, CornerGlobal.z + z );
char DownBlock = m_World->GetBlock( CornerGlobal.x + x, CornerGlobal.y-1, CornerGlobal.z + z );
if(m_Simulator->IsSolidBlock(UpperBlock)||(m_Simulator->IsStationaryBlock(UpperBlock)))
{
m_Relief[x][z] = E_BLOCK;
}
else if(m_Simulator->IsSolidBlock(DownBlock))
{
m_Relief[x][z] = E_PLAIN;
}
else
{
m_Relief[x][z] = E_HOLE;
}
m_WayLength[x][z] = 255;
m_StartSide[x][z] = E_SIDE_NONE;
}
LOG_FLUID("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t", m_Relief[x][0], m_Relief[x][1], m_Relief[x][2], m_Relief[x][3], m_Relief[x][4], m_Relief[x][5], m_Relief[x][6], m_Relief[x][7], m_Relief[x][8], m_Relief[x][9], m_Relief[x][10]);
}
m_NearestHole = 5;
m_CurResult = 0;
while(!m_WaveQueue.empty()) m_WaveQueue.pop();
int left = AREA_WIDTH/2 - 1;
int right = AREA_WIDTH/2 + 1;
int center = AREA_WIDTH/2;
Vector3i r(right, 0, center); //right block
Vector3i l(left, 0, center); //left block
Vector3i f(center, 0, right); //front block
Vector3i b(center, 0, left); //back block
Vector3i c(center, 0, center); //center block
m_WayLength[c.x][c.z] = 0;
Vector3i Nearest[] = {r, l, f, b};
unsigned char Sides[] = {E_SIDE_RIGHT, E_SIDE_LEFT, E_SIDE_FRONT, E_SIDE_BACK};
for(int i=0; i<4; i++)
{
Vector3i cur = Nearest[i];
switch(m_Relief[cur.x][cur.z])
{
case E_HOLE:
{
m_StartSide[cur.x][cur.z] = Sides[i];
m_CurResult |= m_StartSide[cur.x][cur.z];
m_NearestHole = 1;
LOG_FLUID("Hole found: %d \t curResult: %d", int(Sides[i]), int(m_CurResult) );
}break;
case E_BLOCK:
{}break;
case E_PLAIN:
{
m_WaveQueue.push(cur);
m_StartSide[cur.x][cur.z] = Sides[i];
m_WayLength[cur.x][cur.z] = 1;
LOG_FLUID("Plain found: %d", int(Sides[i]));
}
}
}
Vector3i curBlock;
bool bContinue = !m_WaveQueue.empty();
if(!m_WaveQueue.empty())
{
curBlock = m_WaveQueue.front();
bContinue = (m_WayLength[curBlock.x][curBlock.z] < m_NearestHole);
}
while(bContinue)
{
LOG_FLUID("while iteration" );
curBlock = m_WaveQueue.front();
UpdateWave(CornerGlobal, curBlock);
m_WaveQueue.pop();
bContinue = ( (!m_WaveQueue.empty()) && (m_WayLength[m_WaveQueue.front().x][m_WaveQueue.front().z] < m_NearestHole) );
}
if(m_CurResult & E_SIDE_LEFT) Points.push_back(Vector3i( a_X-1, a_Y, a_Z ));
if(m_CurResult & E_SIDE_RIGHT) Points.push_back(Vector3i( a_X+1, a_Y, a_Z ));
if(m_CurResult & E_SIDE_FRONT) Points.push_back(Vector3i( a_X, a_Y, a_Z+1 ));
if(m_CurResult & E_SIDE_BACK) Points.push_back(Vector3i( a_X, a_Y, a_Z-1 ));
if(Points.empty())
{
Vector3i LevelPoints [] = {
Vector3i( a_X-1, a_Y, a_Z ),
Vector3i( a_X+1, a_Y, a_Z ),
Vector3i( a_X, a_Y, a_Z-1 ),
Vector3i( a_X, a_Y, a_Z+1 ),
};
for( int i = 0; i < 4; ++i )
{
char Block = m_World->GetBlock( LevelPoints[i].x, a_Y, LevelPoints[i].z );
if( m_Simulator->IsPassableForFluid(Block) )
Points.push_back( LevelPoints[i] );
}
}
return Points;
}
std::set< Vector3i >* m_ActiveFluid;
std::set< Vector3i >* m_Buffer;
cWorld* m_World;
cFluidSimulator *m_Simulator;
const static int AREA_WIDTH = 11;
const static unsigned char E_SIDE_RIGHT = 0x10;
const static unsigned char E_SIDE_LEFT = 0x20;
const static unsigned char E_SIDE_FRONT = 0x40;
const static unsigned char E_SIDE_BACK = 0x80;
const static unsigned char E_SIDE_NONE = 0x00;
enum eRelief {E_HOLE = 0, E_PLAIN = 1, E_BLOCK = 2};
eRelief m_Relief[AREA_WIDTH][AREA_WIDTH];
unsigned char m_WayLength[AREA_WIDTH][AREA_WIDTH];
unsigned char m_StartSide[AREA_WIDTH][AREA_WIDTH];
std::queue<Vector3i> m_WaveQueue;
int m_NearestHole;
unsigned char m_CurResult;
};
cFluidSimulator::cFluidSimulator( cWorld* a_World )
: cSimulator(a_World)
, m_Data(0)
{
m_Data = new FluidData(a_World, this);
}
cFluidSimulator::~cFluidSimulator()
{
delete m_Data;
}
void cFluidSimulator::AddBlock( int a_X, int a_Y, int a_Z )
{
char BlockType = m_World->GetBlock(a_X, a_Y, a_Z);
if (!IsAllowedBlock(BlockType)) //This should save very much time because it doesn<73>t have to iterate through all blocks
{
return;
}
std::set< Vector3i > & ActiveFluid = *m_Data->m_ActiveFluid;
ActiveFluid.insert( Vector3i( a_X, a_Y, a_Z ) );
}
char cFluidSimulator::GetHighestLevelAround( int a_X, int a_Y, int a_Z )
{
char Max = m_MaxHeight + m_FlowReduction;
#define __HIGHLEVEL_CHECK__( x, y, z ) \
if( IsAllowedBlock( m_World->GetBlock( x, y, z ) ) ) \
{ \
char Meta; \
if( (Meta = m_World->GetBlockMeta( x, y, z ) ) < Max ) Max = Meta; \
else if( Meta == m_MaxHeight + m_FlowReduction ) Max = 0; \
if( Max == 0 ) return 0; \
}
__HIGHLEVEL_CHECK__( a_X-1, a_Y, a_Z );
__HIGHLEVEL_CHECK__( a_X+1, a_Y, a_Z );
__HIGHLEVEL_CHECK__( a_X, a_Y, a_Z-1 );
__HIGHLEVEL_CHECK__( a_X, a_Y, a_Z+1 );
return Max;
}
void cFluidSimulator::Simulate( float a_Dt )
{
m_Timer += a_Dt;
if (m_Data->m_ActiveFluid->empty()) //Nothing to do if there is no active fluid ;) saves very little time ;D
{
return;
}
std::swap( m_Data->m_ActiveFluid, m_Data->m_Buffer ); // Swap so blocks can be added to empty ActiveFluid array
m_Data->m_ActiveFluid->clear();
std::set< Vector3i > & FluidBlocks = *m_Data->m_Buffer;
for( std::set< Vector3i >::iterator itr = FluidBlocks.begin(); itr != FluidBlocks.end(); ++itr )
{
const Vector3i & pos = *itr;
if(UniqueSituation(pos))
{
continue;
}
char BlockID = m_World->GetBlock( pos.x, pos.y, pos.z );
if( IsAllowedBlock( BlockID ) ) // only care about own fluid
{
bool bIsFed = false;
char Meta = m_World->GetBlockMeta( pos.x, pos.y, pos.z );
char Feed = Meta;
if( BlockID == m_StationaryFluidBlock) Meta = 0;
if( Meta == 8 ) // Falling fluid
{
if( IsAllowedBlock( m_World->GetBlock(pos.x, pos.y+1, pos.z) ) ) // Block above is fluid
{
bIsFed = true;
Meta = 0; // Make it a full block
}
}
else if( Meta < m_FlowReduction ) // It's a full block, so it's always fed
{
bIsFed = true;
}
else
{
if( (Feed = GetHighestLevelAround( pos.x, pos.y, pos.z )) < Meta )
bIsFed = true;
}
if( bIsFed )
{
char DownID = m_World->GetBlock( pos.x, pos.y-1, pos.z );
bool bWashedAwayItem = CanWashAway( DownID );
if( (IsPassableForFluid(DownID) || bWashedAwayItem) && !IsStationaryBlock(DownID) ) // free for fluid
{
if( bWashedAwayItem )
{
cBlockHandler * Handler = BlockHandler(DownID);
if(Handler->DropOnUnsuitable())
{
Handler->DropBlock(m_World, pos.x, pos.y - 1, pos.z);
}
}
if (pos.y > 0)
{
m_World->FastSetBlock( pos.x, pos.y-1, pos.z, m_FluidBlock, 8 ); // falling
AddBlock( pos.x, pos.y-1, pos.z );
ApplyUniqueToNearest(pos - Vector3i(0, 1, 0));
}
}
if(IsSolidBlock(DownID)||( BlockID == m_StationaryFluidBlock)) // Not falling
{
if( Feed + m_FlowReduction < Meta )
{
m_World->FastSetBlock( pos.x, pos.y, pos.z, m_FluidBlock, Feed + m_FlowReduction );
AddBlock( pos.x, pos.y, pos.z );
ApplyUniqueToNearest(pos);
}
else if(( Meta < m_MaxHeight )||( BlockID == m_StationaryFluidBlock)) // max is the lowest, so it cannot spread
{
std::vector< Vector3i > Points = m_Data->GetLowestPoints( pos.x, pos.y, pos.z );
for( std::vector< Vector3i >::iterator itr = Points.begin(); itr != Points.end(); ++itr )
{
Vector3i & p = *itr;
char BlockID = m_World->GetBlock( p.x, p.y, p.z );
bool bWashedAwayItem = CanWashAway( BlockID );
if (!IsPassableForFluid(BlockID)) continue;
if (!IsAllowedBlock(BlockID))
{
if (bWashedAwayItem)
{
cBlockHandler * Handler = BlockHandler(DownID);
if(Handler->DropOnUnsuitable())
{
Handler->DropBlock(m_World, p.x, p.y, p.z);
}
}
if( p.y == pos.y )
{
m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, Meta + m_FlowReduction);
}
else
{
m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, 8);
}
AddBlock( p.x, p.y, p.z );
ApplyUniqueToNearest(p);
}
else // it's fluid
{
char PointMeta = m_World->GetBlockMeta( p.x, p.y, p.z );
if( PointMeta > Meta + m_FlowReduction )
{
AddBlock( p.x, p.y, p.z );
ApplyUniqueToNearest(p);
}
}
}
}
}
}
else// not fed
{
m_World->FastSetBlock( pos.x, pos.y, pos.z, E_BLOCK_AIR, 0 );
WakeUp( pos.x, pos.y, pos.z );
}
}
}
}
bool cFluidSimulator::IsPassableForFluid(char a_BlockID)
{
return a_BlockID == E_BLOCK_AIR
|| a_BlockID == E_BLOCK_FIRE
|| IsAllowedBlock(a_BlockID)
|| CanWashAway(a_BlockID);
}
bool cFluidSimulator::IsStationaryBlock (char a_BlockID)
{
return a_BlockID == m_StationaryFluidBlock;
}
bool cFluidSimulator::CanWashAway( char a_BlockID )
{
switch( a_BlockID )
{
case E_BLOCK_YELLOW_FLOWER:
case E_BLOCK_RED_ROSE:
case E_BLOCK_RED_MUSHROOM:
case E_BLOCK_BROWN_MUSHROOM:
case E_BLOCK_CACTUS:
return true;
default:
return false;
};
}
bool cFluidSimulator::IsSolidBlock( char a_BlockID )
{
return !(a_BlockID == E_BLOCK_AIR
|| a_BlockID == E_BLOCK_FIRE
|| IsBlockLava(a_BlockID)
|| IsBlockWater(a_BlockID)
|| CanWashAway(a_BlockID));
}
//TODO Not working very well yet :s
Direction cFluidSimulator::GetFlowingDirection(int a_X, int a_Y, int a_Z, bool a_Over)
{
char BlockID = m_World->GetBlock(a_X, a_Y, a_Z);
if(!IsAllowedBlock(BlockID)) //No Fluid -> No Flowing direction :D
return NONE;
/*
Disabled because of causing problems and beeing useless atm
char BlockBelow = m_World->GetBlock(a_X, a_Y - 1, a_Z); //If there is nothing or fluid below it -> dominating flow is down :D
if(BlockBelow == E_BLOCK_AIR || IsAllowedBlock(BlockBelow))
return Y_MINUS;
*/
char LowestPoint = m_World->GetBlockMeta(a_X, a_Y, a_Z); //Current Block Meta so only lower points will be counted
int X = 0, Y = 0, Z = 0; //Lowest Pos will be stored here
if(IsAllowedBlock(m_World->GetBlock(a_X, a_Y + 1, a_Z)) && a_Over) //check for upper block to flow because this also affects the flowing direction
{
return GetFlowingDirection(a_X, a_Y + 1, a_Z, false);
}
std::vector< Vector3i * > Points;
Points.reserve(4); //Already allocate 4 places :D
//add blocks around the checking pos
Points.push_back(new Vector3i(a_X - 1, a_Y, a_Z));
Points.push_back(new Vector3i(a_X + 1, a_Y, a_Z));
Points.push_back(new Vector3i(a_X, a_Y, a_Z + 1));
Points.push_back(new Vector3i(a_X, a_Y, a_Z - 1));
for(std::vector<Vector3i *>::iterator it = Points.begin(); it < Points.end(); it++)
{
Vector3i *Pos = (*it);
char BlockID = m_World->GetBlock(Pos->x, Pos->y, Pos->z);
if(IsAllowedBlock(BlockID))
{
char Meta = m_World->GetBlockMeta(Pos->x, Pos->y, Pos->z);
if(Meta > LowestPoint)
{
LowestPoint = Meta;
X = Pos->x;
Y = Pos->y;
Z = Pos->z;
}
}else if(BlockID == E_BLOCK_AIR)
{
LowestPoint = 9; //This always dominates
X = Pos->x;
Y = Pos->y;
Z = Pos->z;
}
delete Pos;
}
if(LowestPoint == m_World->GetBlockMeta(a_X, a_Y, a_Z))
return NONE;
if(a_X - X > 0)
{
return X_MINUS;
}
if(a_X - X < 0)
{
return X_PLUS;
}
if(a_Z - Z > 0)
{
return Z_MINUS;
}
if(a_Z - Z < 0)
{
return Z_PLUS;
}
return NONE;
}
bool cFluidSimulator::UniqueSituation(Vector3i a_Pos)
{
bool result = false;
char BlockId = m_World->GetBlock( a_Pos.x, a_Pos.y, a_Pos.z );
char Meta = m_World->GetBlockMeta( a_Pos.x, a_Pos.y, a_Pos.z );
if(IsBlockWater(BlockId))
{
char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z );
if(IsBlockLava(UpperBlock))
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STONE, 0);
}
if(BlockId != E_BLOCK_STATIONARY_WATER)
{
char DownBlockId = m_World->GetBlock( a_Pos.x, a_Pos.y-1, a_Pos.z );
if(IsSolidBlock(DownBlockId))
{
Vector3i LevelPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
};
int SourceBlocksCount = 0;
for(int i=0; i<4; i++)
{
if (m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z)==E_BLOCK_STATIONARY_WATER)
{
SourceBlocksCount++;
}
}
if(SourceBlocksCount>=2)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STATIONARY_WATER, 0);
}
}
}
}
if(IsBlockLava(BlockId))
{
bool bWater = false;
char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z );
if (IsBlockWater(UpperBlock))
{
bWater = true;
}
else
{
Vector3i LevelPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
};
for(int i=0; i<4; i++)
{
if (IsBlockWater(m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z)))
{
bWater = true;
}
}
}
if(bWater)
{
if(BlockId == E_BLOCK_STATIONARY_LAVA)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_OBSIDIAN, 0);
}
else if (Meta<m_MaxHeight)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_COBBLESTONE, 0);
}
}
}
return result;
}
void cFluidSimulator::ApplyUniqueToNearest(Vector3i a_Pos)
{
Vector3i NearPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
Vector3i( a_Pos.x, a_Pos.y-1, a_Pos.z )
};
for(int i=0; i<5; i++)
{
UniqueSituation(NearPoints[i]);
}
}