put the timer and quicksort functions into their own files. Made a few changes to the converter. Converter doesn't understand Entity tags and some chunks cause it to segfault for a currently unknown reason.

git-svn-id: http://mc-server.googlecode.com/svn/trunk@28 0a769ca7-a7f5-676a-18bf-c427514a06d6
master
admin@omencraft.com 2011-10-30 18:15:44 +00:00
parent ca1d98a7ba
commit 940d36d8a1
8 changed files with 209 additions and 227 deletions

View File

@ -1,4 +1,3 @@
// reading a complete binary file
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>
#include <string> #include <string>
@ -6,14 +5,9 @@
#include <string.h> #include <string.h>
#include <ctype.h> #include <ctype.h>
#include "zlib.h" #include "zlib.h"
#include <time.h>
#include "cNBTData.h" #include "cNBTData.h"
#include "timer.h"
void quicksort(int*, int, int); #include "quicksort.h"
int partition(int*, int, int, int);
int median3(int*,int,int);
void swap(int &, int &);
double diffclock(clock_t, clock_t);
using namespace std; using namespace std;
@ -48,9 +42,9 @@ int main () {
unsigned char byte1 = 0; unsigned char byte1 = 0;
unsigned char byte2 = 0; unsigned char byte2 = 0;
unsigned char byte3 = 0; unsigned char byte3 = 0;
unsigned char byte4 = 0; unsigned char byte4 = 0;
unsigned char byte5 = 0; unsigned char byte5 = 0;
unsigned char trash = 0; unsigned char trash = 0;
unsigned int frloc = 0; unsigned int frloc = 0;
int toffset = 0; int toffset = 0;
int compdlength = 0; int compdlength = 0;
@ -72,7 +66,7 @@ int main () {
toffset = 4096 * ((byte1*256*256) + (byte2*256) + byte3);//find the chunk offsets using the first three bytes of each long; toffset = 4096 * ((byte1*256*256) + (byte2*256) + byte3);//find the chunk offsets using the first three bytes of each long;
toffarr[i] = toffset;//array of chunk offset locatiosn in the fle. toffarr[i] = toffset;//array of chunk offset locatiosn in the fle.
} }
for ( short i = 0; i < 4096; i++ ) {//loop through next 4096 bytes of the header. for ( short i = 0; i < 4096; i++ ) {//loop through next 4096 bytes of the header.
//keeping this code here in case we need it later. not using it right now. //keeping this code here in case we need it later. not using it right now.
if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR 2jkd READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR 2jkd READING FROM FILE " << SourceFile; fclose(f); return false; }
} }
@ -80,65 +74,38 @@ int main () {
quicksort(toffarr, 0, 1023); //sort the array from smallest to larget offset locations so we only have to read through the file once. quicksort(toffarr, 0, 1023); //sort the array from smallest to larget offset locations so we only have to read through the file once.
for ( short ia = 0; ia < 1024; ia++ ) {//a region file can hold a maximum of 1024 chunks (32*32) for ( short ia = 0; ia < 1024; ia++ ) {//a region file can hold a maximum of 1024 chunks (32*32)
if (ia == 31) { ia++; }
if (toffarr[ia] < 8192) { //offsets of less than 8192 are impossible. 0 means there is no chunk in a particular location. if (toffarr[ia] < 8192) { //offsets of less than 8192 are impossible. 0 means there is no chunk in a particular location.
if (toffarr[ia] > 0) { cout << "ERROR 2s31 IN COLLECTED CHUNK OFFSETS " << toffarr[ia]; fclose(f); return false; } //values between 0 and 8192 should be impossible. if (toffarr[ia] > 0) { cout << "ERROR 2s31 IN COLLECTED CHUNK OFFSETS " << toffarr[ia]; fclose(f); return false; } //values between 0 and 8192 should be impossible.
//This file does not contain the max 1024 chunks, skip until we get to the first //This file does not contain the max 1024 chunks, skip until we get to the first
} else { // found a chunk offset value } else { // found a chunk offset value
//Chunk data begins with a (big-endian) four-byte length field which indicates the exact length of the remaining chunk data in bytes. The following byte indicates the compression scheme used for chunk data, and the remaining (length-1) bytes are the compressed chunk data. //Chunk data begins with a (big-endian) four-byte length field which indicates the exact length of the remaining chunk data in bytes. The following byte indicates the compression scheme used for chunk data, and the remaining (length-1) bytes are the compressed chunk data.
printf("Working on chunk %i\n", ia);
if( fread( &byte1, sizeof(byte1), 1, f) != 1 ) { cout << "ERROR 2t32 READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &byte1, sizeof(byte1), 1, f) != 1 ) { cout << "ERROR 2t32 READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte2, sizeof(byte2), 1, f) != 1 ) { cout << "ERROR 2y51 READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &byte2, sizeof(byte2), 1, f) != 1 ) { cout << "ERROR 2y51 READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte3, sizeof(byte3), 1, f) != 1 ) { cout << "ERROR 3424 READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &byte3, sizeof(byte3), 1, f) != 1 ) { cout << "ERROR 3424 READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte4, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR sd22 READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &byte4, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR sd22 READING FROM FILE " << SourceFile; fclose(f); return false; }
compdlength = ((byte1*256*256*256) + (byte2*256*256) + (byte3*256) + byte4 - 0); //length of compressed chunk data compdlength = ((byte1*256*256*256) + (byte2*256*256) + (byte3*256) + byte4 - 0); //length of compressed chunk data
if( fread( &byte5, sizeof(byte5), 1, f) != 1 ) { cout << "ERROR 2341 READING FROM FILE " << SourceFile; fclose(f); return false; } //compression type, 1 = GZip (RFC1952) (unused in practice) , 2 = Zlib (RFC1950) if( fread( &byte5, sizeof(byte5), 1, f) != 1 ) { cout << "ERROR 2341 READING FROM FILE " << SourceFile; fclose(f); return false; } //compression type, 1 = GZip (RFC1952) (unused in practice) , 2 = Zlib (RFC1950)
//printf("byte1: %x \n", byte1);
//printf("byte2: %x \n", byte2); //printf("byte1: %i\n", byte1);
//printf("byte3: %x \n", byte3); //printf("byte2: %i\n", byte2);
//printf("byte4: %x \n", byte4); //printf("byte3: %i\n", byte3);
//printf("byte4: %i\n", byte4);
//printf("byte5: %i\n", byte5);
frloc += 5; //moved ahead 5 bytes while reading data. frloc += 5; //moved ahead 5 bytes while reading data.
//cout << compdlength << endl; return 1;
//unsigned char* comp_data = new unsigned char[ compdlength ];
//cout << "size of comp_data: " << compdlength << endl;
//cout << "size of comp_data2: " << sizeof(comp_data) << endl;
//fread( comp_data, sizeof(unsigned char), compdlength, f);
//if( fread( &comp_data, sizeof(unsigned char), compdlength, f) != 1 ) { cout << "ERROR 1234 READING FROM FILE " << SourceFile; fclose(f); return false; } //actual compressed chunk data
//cout << "frloc: " << frloc << endl;
// TODO - delete [] temparr after you're done with it, now it's a memory leak // TODO - delete [] temparr after you're done with it, now it's a memory leak
char* temparr = new char[compdlength]; //can't get fread to read more than one char at a time into a char array... so that's what I'll do. :( At least it works. char* compBlockData = new char[compdlength]; //can't get fread to read more than one char at a time into a char array... so that's what I'll do. :( At least it works.
if( fread( temparr, compdlength, 1, f) != 1 ) { cout << "ERROR rf22 READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( compBlockData, compdlength, 1, f) != 1 ) { cout << "ERROR rf22 READING FROM FILE " << SourceFile; fclose(f); return false; }
frloc = frloc + compdlength; frloc = frloc + compdlength;
/*
int re = 0;
char tempbyte = 0;
while (re < compdlength) { //loop through file and read contents into char array a byte at a time.
if( fread( &tempbyte, sizeof(tempbyte), 1, f) != 1 ) { cout << "ERROR rf22 READING FROM FILE " << SourceFile; fclose(f); return false; }
temparr[re] = tempbyte;
re++;
frloc++;
}
*/
//if( fread( comp_data, compdlength, sizeof(unsigned char), f) != 1 ) { cout << "ERROR 1234 READING FROM FILE " << SourceFile <<endl; fclose(f); return false; } //actual compressed chunk data
//frloc += compdlength;
//cout << "frloc: " << frloc << endl;
//return 1;
//cout << deflateBound(&comp_data,compdlength) << endl;
uLongf DestSize = 98576;// uncompressed chunks should never be larger than this uLongf DestSize = 98576;// uncompressed chunks should never be larger than this
//cout << "echo1: " << DestSize << endl;
char* BlockData = new char[ DestSize ]; char* BlockData = new char[ DestSize ];
//return 1;
//cout << "size of comp_data1: " << sizeof(comp_data) << endl; int errorcode = uncompress( (Bytef*)BlockData, &DestSize, (Bytef*)compBlockData, compdlength ); //DestSize will update to the actual uncompressed data size after this opperation.
//int errorcode = uncompress( (Bytef*)BlockData, &DestSize, (Bytef*)comp_data, compdlength );
int errorcode = uncompress( (Bytef*)BlockData, &DestSize, (Bytef*)temparr, compdlength ); //DestSize will update to the actual uncompressed data size after this opperation.
//cout << "echo2: " << DestSize << endl;
//cout << "echo3: " << errorcode << endl;
//cout << "size of Block data: " << sizeof(BlockData) << endl;
//int errorcode = 1;
int testr = (int)DestSize; //testing something, can't remember what. int testr = (int)DestSize; //testing something, can't remember what.
if( errorcode != Z_OK ){ if( errorcode != Z_OK ){
printf("ERROR: Decompressing chunk data! %i", errorcode ); printf("ERROR: Decompressing chunk data! %i", errorcode );
@ -158,45 +125,49 @@ int main () {
}; };
} }
//cout << "1" << endl;
//cout << comp_data << endl;
//return 0;
//playing with FakeTruth's NBT parser. (unsuccessfully)
//string BlockDataString(BlockData);
//memcpy (BlockDataString,BlockData,strlen(BlockData)+1);
//BlockDataString = BlockData;
//cNBTCompound* NBTCompound = new cNBTCompound( 0, 0 );
//cout << cNBTData(BlockData, DestSize)->cNBTCompound << endl;
//cout << BlockDataString << endl;
//testing of nbtparser. //testing of nbtparser.
cNBTData* NBTData = new cNBTData(BlockData, (testr)); cNBTData* NBTData = new cNBTData(BlockData, (testr));
//NBTData->m_bDecompressed = true;
NBTData->ParseData(); NBTData->ParseData();
NBTData->PrintData(); //NBTData->PrintData();
NBTData->OpenCompound("");
NBTData->OpenCompound("Level"); // You need to open the right compounds before you can access the data in it
//NBTData->GetByteArray("Blocks"); //NBT Data for blocks should look something like this:
//for(unsigned int i = 0; i < 111; i++) {//re //==== STRUCTURED NBT DATA ====
//printf("Blocks?: %i\n", NBTData->cNBTCompound::GetByteArray("Blocks")[0]); // COMPOUND ( )
NBTData->OpenCompound(""); // COMPOUND
NBTData->OpenCompound("Level"); // You need to open the right compounds before you can access the data in it // COMPOUND (Level)
printf("xPos: %i\n", NBTData->GetInteger("xPos") ); // LIST (Entities)
//will print // LIST (TileEntities)
//xPos: 0 // INTEGER LastUpdate (0)
printf("test: %i\n", NBTData->GetByteArray("Blocks")[0] ); // INTEGER xPos (0)
// INTEGER zPos (0)
// BYTE TerrainPopulated (1)
// BYTE ARRAY BlockLight (length: 16384)
// BYTE ARRAY Blocks (length: 32768)
// BYTE ARRAY Data (length: 16384)
// BYTE ARRAY HeightMap (length: 256)
// BYTE ARRAY SkyLight (length: 16384)
//=============================
for(unsigned int i = 0; i < 16384; i++) {
//printf("array HM: %i\n", NBTData->GetByteArray("HeightMap")[i]);
}
for(unsigned int i = 0; i < 32768; i++) {
//printf("array Blocks: %i\n", NBTData->GetByteArray("Blocks")[i]);
}
//printf("xPos: %i\n", NBTData->GetInteger("xPos") );
NBTData->CloseCompound();// Close the compounds after you're done NBTData->CloseCompound();// Close the compounds after you're done
NBTData->CloseCompound(); NBTData->CloseCompound();
//}
return 1;
fwrite( BlockData, DestSize, 1, wf ); //write contents of uncompressed block data to file to check to see if it's valid... It is! :D fwrite( BlockData, DestSize, 1, wf ); //write contents of uncompressed block data to file to check to see if it's valid... It is! :D
//fwrite( &temparr, compdlength, sizeof(unsigned char), wf ); delete [] compBlockData;
//cin >> n; //just to see screen output
//delete [] comp_data;
//return 0;
delete [] BlockData; delete [] BlockData;
while ( (frloc < toffarr[ia+1]) && (ia<1023) ) { //loop through Notch's junk data until we get to another chunk offset possition to start the loop again while ( (frloc < toffarr[ia+1]) && (ia<1023) ) { //loop through Notch's junk data until we get to another chunk offset possition to start the loop again
if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR 2nkd READING FROM FILE " << SourceFile; fclose(f); return false; } if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR 2nkd READING FROM FILE " << SourceFile; fclose(f); return false; }
frloc ++; frloc ++;
@ -206,18 +177,7 @@ int main () {
//if (ia == 30) { break; } //if (ia == 30) { break; }
} }
//return 0; //return 0;
/*
for( short i = 0; i < 1024 ; ++i ) {
if( fread( &byte1, sizeof(byte1), 1, f) != 1 ) { cout << "ERROR READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte2, sizeof(byte2), 1, f) != 1 ) { cout << "ERROR READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte3, sizeof(byte3), 1, f) != 1 ) { cout << "ERROR READING FROM FILE " << SourceFile; fclose(f); return false; }
if( fread( &byte4, sizeof(byte4), 1, f) != 1 ) { cout << "ERROR READING FROM FILE " << SourceFile; fclose(f); return false; }
}
//printf("value: %x \n",trash);
*/
for ( short i = 0; i < 1024; i++ ) { for ( short i = 0; i < 1024; i++ ) {
//cout << toffarr[i] << endl; //cout << toffarr[i] << endl;
} }
@ -238,95 +198,3 @@ int main () {
} }
double diffclock(clock_t clock1,clock_t clock2)
{
double diffticks=clock1-clock2;
double diffms=(diffticks*10)/CLOCKS_PER_SEC;
return diffms;
}
// Quicksort controller function, it partitions the different pieces of our array.
void quicksort(int *arIntegers, int left, int right)
{
/* cout << "quicksort ([" << arIntegers[0] << ","
<< arIntegers[1] << ","
<< arIntegers[2] << ","
<< arIntegers[3] << ","
<< arIntegers[4] << ","
<< arIntegers[5] << ","
<< arIntegers[6] << "],"
<< left << ","
<< right << ")\n";
*/
if (right > left)
{
int pivotIndex = median3(arIntegers,left,right);
int pivotNewIndex = partition(arIntegers, left, right, pivotIndex);
// Recursive call to quicksort to sort each half.
quicksort(arIntegers, left, pivotNewIndex-1);
quicksort(arIntegers, pivotNewIndex+1, right);
}
}
int median3(int *arIntegers,int left,int right)
{
int center = (left+right)/2;
if(arIntegers[center] < arIntegers[left])
swap(arIntegers[left],arIntegers[center]);
if(arIntegers[right] < arIntegers[left])
swap(arIntegers[left],arIntegers[right]);
if(arIntegers[right] < arIntegers[center])
swap(arIntegers[center],arIntegers[right]);
swap(arIntegers[center],arIntegers[right-1]);
return center;
}
// This function takes an array (or one half an array) and sorts it.
// It then returns a new pivot index number back to quicksort.
int partition(int *arIntegers, int left, int right, int pivot)
{
/* cout << "partition ("<< arIntegers[0] << ","
<< arIntegers[1] << ","
<< arIntegers[2] << ","
<< arIntegers[3] << ","
<< arIntegers[4] << ","
<< arIntegers[5] << ","
<< arIntegers[6] << "],"
<< left << ","
<< right << ")\n";
*/
int pivotValue = arIntegers[pivot];
// Swap it out all the way to the end of the array
// So we know where it always is.
swap(arIntegers[pivot], arIntegers[right]);
int storeIndex = left;
// Move through the array from start to finish comparing each to our
// pivot value (not index, the value that was located at the pivot index)
for (int i = left; i < right; i++)
{
if (arIntegers[i] <= pivotValue)
{
swap(arIntegers[i], arIntegers[storeIndex]);
storeIndex++;
}
}
swap(arIntegers[storeIndex], arIntegers[right]);
return storeIndex;
}
// Simple swap function for our in place swapping.
void swap(int &val1, int &val2)
{
int temp = val1;
val1 = val2;
val2 = temp;
}

View File

@ -145,7 +145,7 @@ void cNBTData::Compress()
if( ret != Z_STREAM_END ) if( ret != Z_STREAM_END )
{ {
printf("WARNING: Compressing didn't go to end of stream\n");//re //printf("WARNING: Compressing didn't go to end of stream\n");//re
} }
if(m_Buffer) if(m_Buffer)
@ -249,7 +249,7 @@ void cNBTCompound::AppendInteger( std::string & a_Buffer, int a_Value )
void cNBTCompound::Serialize(std::string & a_Buffer) void cNBTCompound::Serialize(std::string & a_Buffer)
{ {
printf("cNBTCompound::Serialize()\n");//re //printf("cNBTCompound::Serialize()\n");//re
for( CompoundMap::iterator itr = m_Compounds.begin(); itr != m_Compounds.end(); itr++ ) for( CompoundMap::iterator itr = m_Compounds.begin(); itr != m_Compounds.end(); itr++ )
{ {
if( itr->second == 0 ) continue; if( itr->second == 0 ) continue;
@ -357,10 +357,10 @@ void cNBTCompound::PrintData( int a_Depth, std::string a_Name )
printf("%s BYTE %s (%i)\n", Prefix, itr->first.c_str(), itr->second ); printf("%s BYTE %s (%i)\n", Prefix, itr->first.c_str(), itr->second );
} }
for( ByteArrayMap::iterator itr = m_ByteArrays.begin(); itr != m_ByteArrays.end(); itr++ ) for( ByteArrayMap::iterator itr = m_ByteArrays.begin(); itr != m_ByteArrays.end(); itr++ )
{ {
printf("%s BYTE ARRAY %s (length: %i)\n", Prefix, itr->first.c_str(), sizeof(itr->second) ); printf("%s BYTE ARRAY %s (length: %li)\n", Prefix, itr->first.c_str(), sizeof(itr->second) );
} }
delete Prefix; delete Prefix;
} }
@ -383,7 +383,7 @@ void cNBTData::Serialize()
memcpy( m_Buffer, Buffer.c_str(), Buffer.size() ); memcpy( m_Buffer, Buffer.c_str(), Buffer.size() );
m_BufferSize = Buffer.size(); m_BufferSize = Buffer.size();
printf("m_BufferSize1: %i\n", m_BufferSize);//re //printf("m_BufferSize1: %i\n", m_BufferSize);//re
//for(unsigned int i = 0; i < m_BufferSize; i++)//re //for(unsigned int i = 0; i < m_BufferSize; i++)//re
//{//re //{//re
@ -400,18 +400,18 @@ void cNBTData::ParseData()
} }
m_Index = 0; m_Index = 0;
printf("m_BufferSize2: %i\n", m_BufferSize);//re //printf("m_BufferSize2: %i\n", m_BufferSize);//re
printf("cNBTData::ParseData()\n");//re //printf("cNBTData::ParseData()\n");//re
//for(unsigned int i = 0; i < m_BufferSize; i++)//re //for(unsigned int i = 0; i < m_BufferSize; i++)//re
for(unsigned int i = 0; i < 70; i++)//re //for(unsigned int i = 0; i < 70; i++)//re
{//re //{//re
printf("echo%02i %02x %3i %c\n", i, (unsigned char)m_Buffer[i], (unsigned char)m_Buffer[i], m_Buffer[i] );//re // printf("echo%02i %02x %3i %c\n", i, (unsigned char)m_Buffer[i], (unsigned char)m_Buffer[i], m_Buffer[i] );//re
}//re //}//re
while( m_Index < m_BufferSize ) while( m_Index < m_BufferSize )
{ {
printf("m_BufferSize3: %i\n", m_BufferSize); //printf("m_BufferSize3: %i\n", m_BufferSize);
printf("m_Index: %i\n", m_Index); //printf("m_Index: %i\n", m_Index);
ParseTags(); ParseTags();
} }
} }
@ -420,20 +420,20 @@ void cNBTData::ParseTags()
{ {
if( m_Index < m_BufferSize ) if( m_Index < m_BufferSize )
{ {
printf("ParseTags idx:%02i %02x %3i %c\n", m_Index, (unsigned char)m_Buffer[m_Index], (unsigned char)m_Buffer[m_Index], m_Buffer[m_Index] );//re //printf("ParseTags idx:%02i %02x %3i %c\n", m_Index, (unsigned char)m_Buffer[m_Index], (unsigned char)m_Buffer[m_Index], m_Buffer[m_Index] );//re
unsigned char Tag = m_Buffer[m_Index]; unsigned char Tag = m_Buffer[m_Index];
if( Tag > 0 && m_ParseFunctions[ Tag ] ) if( Tag > 0 && m_ParseFunctions[ Tag ] )
{ {
printf("m_BufferSize4: %i\n", m_BufferSize); //printf("m_BufferSize4: %i\n", m_BufferSize);
printf("m_Index1: %i\n\n\n\n", m_Index); //printf("m_Index1: %i\n\n\n\n", m_Index);
m_Index++; m_Index++;
printf("Tag: %i\n", Tag); //printf("Tag: %i\n", Tag);
(*this.*m_ParseFunctions[ Tag ])(true); (*this.*m_ParseFunctions[ Tag ])(true);
} }
else if( Tag == TAG_End ) else if( Tag == TAG_End )
{ {
printf("Tag End"); //printf("Tag End");
m_Index++; m_Index++;
} }
else else
@ -453,7 +453,7 @@ void cNBTData::ParseCompound( bool a_bNamed )
{ {
std::string Name; std::string Name;
if( a_bNamed ) Name = ReadName(); if( a_bNamed ) Name = ReadName();
printf("OPEN COMPOUND: %s\n", Name.c_str() );//re //printf("OPEN COMPOUND: %s\n", Name.c_str() );//re
PutCompound( Name ); PutCompound( Name );
OpenCompound( Name ); OpenCompound( Name );
@ -462,7 +462,7 @@ void cNBTData::ParseCompound( bool a_bNamed )
ParseTags(); ParseTags();
} }
CloseCompound(); CloseCompound();
printf("CLOSE COMPOUND\n");//re //printf("CLOSE COMPOUND\n");//re
} }
void cNBTData::ParseList( bool a_bNamed ) void cNBTData::ParseList( bool a_bNamed )
@ -471,12 +471,12 @@ void cNBTData::ParseList( bool a_bNamed )
if( a_bNamed ) Name = ReadName(); if( a_bNamed ) Name = ReadName();
ENUM_TAG TagType = (ENUM_TAG)ReadByte(); ENUM_TAG TagType = (ENUM_TAG)ReadByte();
int Length = ReadInt(); int Length = ReadInt();
printf("LIST: %s Type: %02x Length: %i\n", Name.c_str(), TagType, Length );//re //printf("LIST: %s Type: %02x Length: %i\n", Name.c_str(), TagType, Length );//re
for(unsigned int i = (m_Index-10 > 0)?m_Index-10:0 ; i < m_Index+10 && i < m_BufferSize; i++)//re //for(unsigned int i = (m_Index-10 > 0)?m_Index-10:0 ; i < m_Index+10 && i < m_BufferSize; i++)//re
{//re //{//re
printf("%02i %02x %3i %c\n", i, (unsigned char)m_Buffer[i], (unsigned char)m_Buffer[i], m_Buffer[i] );//re //printf("%02i %02x %3i %c\n", i, (unsigned char)m_Buffer[i], (unsigned char)m_Buffer[i], m_Buffer[i] );//re
}//re //}//re
PutList( Name, TagType ); PutList( Name, TagType );
OpenList( Name ); OpenList( Name );
@ -500,7 +500,7 @@ void cNBTData::ParseByte( bool a_bNamed )
PutByte( Name, Value ); PutByte( Name, Value );
printf("BYTE: %s %i\n", Name.c_str(), Value );//re //printf("BYTE: %s %i\n", Name.c_str(), Value );//re
} }
void cNBTData::ParseShort( bool a_bNamed ) void cNBTData::ParseShort( bool a_bNamed )
@ -511,7 +511,7 @@ void cNBTData::ParseShort( bool a_bNamed )
PutShort( Name, Value ); PutShort( Name, Value );
printf("SHORT: %s %i\n", Name.c_str(), Value );//re //printf("SHORT: %s %i\n", Name.c_str(), Value );//re
} }
void cNBTData::ParseInt( bool a_bNamed ) void cNBTData::ParseInt( bool a_bNamed )
@ -522,7 +522,7 @@ void cNBTData::ParseInt( bool a_bNamed )
PutInteger( Name, Value ); PutInteger( Name, Value );
printf("INT: %s %i\n", Name.c_str(), Value );//re //printf("INT: %s %i\n", Name.c_str(), Value );//re
} }
void cNBTData::ParseLong( bool a_bNamed ) void cNBTData::ParseLong( bool a_bNamed )
@ -533,7 +533,7 @@ void cNBTData::ParseLong( bool a_bNamed )
PutInteger( Name, (int)Value ); PutInteger( Name, (int)Value );
printf("LONG: %s %li\n", Name.c_str(), Value );//re //printf("LONG: %s %lli\n", Name.c_str(), Value );//re
} }
void cNBTData::ParseString( bool a_bNamed ) void cNBTData::ParseString( bool a_bNamed )
@ -544,7 +544,7 @@ void cNBTData::ParseString( bool a_bNamed )
PutString( Name, String ); PutString( Name, String );
printf("STRING: %s (%s)\n", Name.c_str(), String.c_str() );//re //printf("STRING: %s (%s)\n", Name.c_str(), String.c_str() );//re
} }
void cNBTData::ParseByteArray( bool a_bNamed ) void cNBTData::ParseByteArray( bool a_bNamed )
@ -559,21 +559,21 @@ void cNBTData::ParseByteArray( bool a_bNamed )
char* ByteArray = new char[ Length ]; char* ByteArray = new char[ Length ];
if( Length > 0 ) if( Length > 0 )
{ {
memcpy( ByteArray, &m_Buffer[ m_Index ], Length ); memcpy( ByteArray, &m_Buffer[ m_Index ], Length );
m_Index += Length; m_Index += Length;
} }
PutByteArray( Name, ByteArray ); PutByteArray( Name, ByteArray );
printf("VALUE: %s First 5 Chars: (%i,%i,%i,%i,%i)\n", Name.c_str(), ByteArray[0],ByteArray[1],ByteArray[2],ByteArray[3],ByteArray[4] );//re //printf("VALUE: %s First 5 Chars: (%i,%i,%i,%i,%i)\n", Name.c_str(), ByteArray[0],ByteArray[1],ByteArray[2],ByteArray[3],ByteArray[4] );//re
} }
std::string cNBTData::ReadName() std::string cNBTData::ReadName()
{ {
printf("crui1 \n"); //printf("crui1 \n");
short Length = ReadShort(); short Length = ReadShort();
printf("crui Length: %i\n", Length); //printf("crui Length: %i\n", Length);
std::string Name; std::string Name;
if( Length > 0 ) if( Length > 0 )
{ {
@ -758,4 +758,4 @@ void cNBTList::Clear()
} }
} }
m_List.clear(); m_List.clear();
} }

View File

@ -23,11 +23,11 @@ public:
TAG_Byte = 1, TAG_Byte = 1,
TAG_Short = 2, TAG_Short = 2,
TAG_Int = 3, TAG_Int = 3,
TAG_Long = 4, TAG_Long = 4,
TAG_Float = 5, TAG_Float = 5,
TAG_Double = 6, TAG_Double = 6,
TAG_ByteArray = 7, TAG_ByteArray = 7,
TAG_String = 8, TAG_String = 8,
TAG_List = 9, TAG_List = 9,
TAG_Compound = 10, TAG_Compound = 10,
TAG_NumTags // Not a real tag, but contains number of tags TAG_NumTags // Not a real tag, but contains number of tags
@ -53,8 +53,8 @@ public:
cNBTCompound* GetCompound( std::string Name ); cNBTCompound* GetCompound( std::string Name );
cNBTList* GetList( std::string Name ) { return m_Lists[Name]; } cNBTList* GetList( std::string Name ) { return m_Lists[Name]; }
cNBTList* GetCurrentList() { return m_CurrentList; } cNBTList* GetCurrentList() { return m_CurrentList; }
cNBTCompound* GetParentCompound() { return m_ParentCompound; } cNBTCompound* GetParentCompound() { return m_ParentCompound; }
bool OpenList( std::string a_Name ); bool OpenList( std::string a_Name );
bool CloseList(); bool CloseList();

Binary file not shown.

88
converter/quicksort.cpp Normal file
View File

@ -0,0 +1,88 @@
#include "quicksort.h"
// Quicksort controller function, it partitions the different pieces of our array.
void quicksort(int *arIntegers, int left, int right)
{
/* cout << "quicksort ([" << arIntegers[0] << ","
<< arIntegers[1] << ","
<< arIntegers[2] << ","
<< arIntegers[3] << ","
<< arIntegers[4] << ","
<< arIntegers[5] << ","
<< arIntegers[6] << "],"
<< left << ","
<< right << ")\n";
*/
if (right > left)
{
int pivotIndex = median3(arIntegers,left,right);
int pivotNewIndex = partition(arIntegers, left, right, pivotIndex);
// Recursive call to quicksort to sort each half.
quicksort(arIntegers, left, pivotNewIndex-1);
quicksort(arIntegers, pivotNewIndex+1, right);
}
}
int median3(int *arIntegers,int left,int right)
{
int center = (left+right)/2;
if(arIntegers[center] < arIntegers[left])
swap(arIntegers[left],arIntegers[center]);
if(arIntegers[right] < arIntegers[left])
swap(arIntegers[left],arIntegers[right]);
if(arIntegers[right] < arIntegers[center])
swap(arIntegers[center],arIntegers[right]);
swap(arIntegers[center],arIntegers[right-1]);
return center;
}
// This function takes an array (or one half an array) and sorts it.
// It then returns a new pivot index number back to quicksort.
int partition(int *arIntegers, int left, int right, int pivot)
{
/* cout << "partition ("<< arIntegers[0] << ","
<< arIntegers[1] << ","
<< arIntegers[2] << ","
<< arIntegers[3] << ","
<< arIntegers[4] << ","
<< arIntegers[5] << ","
<< arIntegers[6] << "],"
<< left << ","
<< right << ")\n";
*/
int pivotValue = arIntegers[pivot];
// Swap it out all the way to the end of the array
// So we know where it always is.
swap(arIntegers[pivot], arIntegers[right]);
int storeIndex = left;
// Move through the array from start to finish comparing each to our
// pivot value (not index, the value that was located at the pivot index)
for (int i = left; i < right; i++)
{
if (arIntegers[i] <= pivotValue)
{
swap(arIntegers[i], arIntegers[storeIndex]);
storeIndex++;
}
}
swap(arIntegers[storeIndex], arIntegers[right]);
return storeIndex;
}
// Simple swap function for our in place swapping.
void swap(int &val1, int &val2)
{
int temp = val1;
val1 = val2;
val2 = temp;
}

9
converter/quicksort.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#include <ctype.h>
void quicksort(int*, int, int);
int partition(int*, int, int, int);
int median3(int*,int,int);
void swap(int &, int &);

9
converter/timer.cpp Normal file
View File

@ -0,0 +1,9 @@
#include "timer.h"
double diffclock(clock_t clock1,clock_t clock2)
{
double diffticks=clock1-clock2;
double diffms=(diffticks*10)/CLOCKS_PER_SEC;
return diffms;
}

8
converter/timer.h Normal file
View File

@ -0,0 +1,8 @@
#pragma once
#include <time.h>
double diffclock(clock_t, clock_t);