2013-07-29 04:13:03 -07:00
|
|
|
|
|
|
|
// FastRandom.cpp
|
|
|
|
|
|
|
|
// Implements the cFastRandom class representing a fast random number generator
|
|
|
|
|
|
|
|
#include "Globals.h"
|
|
|
|
#include <time.h>
|
|
|
|
#include "FastRandom.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0 && defined(_DEBUG)
|
|
|
|
// Self-test
|
|
|
|
// Both ints and floats are quick-tested to see if the random is calculated correctly, checking the range in ASSERTs,
|
|
|
|
// and if it performs well in terms of distribution (checked by avg, expected to be in the range midpoint
|
|
|
|
class cFastRandomTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
cFastRandomTest(void)
|
|
|
|
{
|
|
|
|
TestInts();
|
|
|
|
TestFloats();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TestInts(void)
|
|
|
|
{
|
|
|
|
printf("Testing ints...\n");
|
|
|
|
cFastRandom rnd;
|
|
|
|
int sum = 0;
|
|
|
|
const int BUCKETS = 8;
|
|
|
|
int Counts[BUCKETS];
|
|
|
|
memset(Counts, 0, sizeof(Counts));
|
|
|
|
const int ITER = 10000;
|
|
|
|
for (int i = 0; i < ITER; i++)
|
|
|
|
{
|
|
|
|
int v = rnd.NextInt(1000);
|
|
|
|
ASSERT(v >= 0);
|
|
|
|
ASSERT(v < 1000);
|
|
|
|
Counts[v % BUCKETS]++;
|
|
|
|
sum += v;
|
|
|
|
}
|
|
|
|
double avg = (double)sum / ITER;
|
|
|
|
printf("avg: %f\n", avg);
|
|
|
|
for (int i = 0; i < BUCKETS; i++)
|
|
|
|
{
|
|
|
|
printf(" bucket %d: %d\n", i, Counts[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TestFloats(void)
|
|
|
|
{
|
|
|
|
printf("Testing floats...\n");
|
|
|
|
cFastRandom rnd;
|
|
|
|
float sum = 0;
|
|
|
|
const int BUCKETS = 8;
|
|
|
|
int Counts[BUCKETS];
|
|
|
|
memset(Counts, 0, sizeof(Counts));
|
|
|
|
const int ITER = 10000;
|
|
|
|
for (int i = 0; i < ITER; i++)
|
|
|
|
{
|
|
|
|
float v = rnd.NextFloat(1000);
|
|
|
|
ASSERT(v >= 0);
|
|
|
|
ASSERT(v <= 1000);
|
|
|
|
Counts[((int)v) % BUCKETS]++;
|
|
|
|
sum += v;
|
|
|
|
}
|
|
|
|
sum = sum / ITER;
|
|
|
|
printf("avg: %f\n", sum);
|
|
|
|
for (int i = 0; i < BUCKETS; i++)
|
|
|
|
{
|
|
|
|
printf(" bucket %d: %d\n", i, Counts[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} g_Test;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cFastRandom::m_SeedCounter = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cFastRandom::cFastRandom(void) :
|
|
|
|
m_Seed(m_SeedCounter++)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cFastRandom::NextInt(int a_Range)
|
|
|
|
{
|
|
|
|
ASSERT(a_Range <= 1000000); // The random is not sufficiently linearly distributed with bigger ranges
|
|
|
|
ASSERT(a_Range > 0);
|
|
|
|
|
|
|
|
// Make the m_Counter operations as minimal as possible, to emulate atomicity
|
|
|
|
int Counter = m_Counter++;
|
|
|
|
|
|
|
|
// Use a_Range, m_Counter and m_Seed as inputs to the pseudorandom function:
|
|
|
|
int n = a_Range + m_Counter * 57 + m_Seed * 57 * 57;
|
|
|
|
n = (n << 13) ^ n;
|
|
|
|
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
|
|
|
|
return ((n / 11) % a_Range);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cFastRandom::NextInt(int a_Range, int a_Salt)
|
|
|
|
{
|
|
|
|
ASSERT(a_Range <= 1000000); // The random is not sufficiently linearly distributed with bigger ranges
|
|
|
|
ASSERT(a_Range > 0);
|
|
|
|
|
|
|
|
// Make the m_Counter operations as minimal as possible, to emulate atomicity
|
|
|
|
int Counter = m_Counter++;
|
|
|
|
|
|
|
|
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
|
|
|
|
int n = a_Range + m_Counter * 57 + m_Seed * 57 * 57 + a_Salt * 57 * 57 * 57;
|
|
|
|
n = (n << 13) ^ n;
|
|
|
|
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
|
|
|
|
return ((n / 11) % a_Range);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float cFastRandom::NextFloat(float a_Range)
|
|
|
|
{
|
|
|
|
// Make the m_Counter operations as minimal as possible, to emulate atomicity
|
|
|
|
int Counter = m_Counter++;
|
|
|
|
|
|
|
|
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
|
|
|
|
int n = (int)a_Range + m_Counter * 57 + m_Seed * 57 * 57;
|
|
|
|
n = (n << 13) ^ n;
|
|
|
|
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
|
|
|
|
|
|
|
|
// Convert the integer into float with the specified range:
|
|
|
|
return (((float)n / (float)0x7fffffff) * a_Range);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float cFastRandom::NextFloat(float a_Range, int a_Salt)
|
|
|
|
{
|
|
|
|
// Make the m_Counter operations as minimal as possible, to emulate atomicity
|
|
|
|
int Counter = m_Counter++;
|
|
|
|
|
|
|
|
// Use a_Range, a_Salt, m_Counter and m_Seed as inputs to the pseudorandom function:
|
|
|
|
int n = (int)a_Range + m_Counter * 57 + m_Seed * 57 * 57 + a_Salt * 57 * 57 * 57;
|
|
|
|
n = (n << 13) ^ n;
|
|
|
|
n = ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff);
|
|
|
|
|
|
|
|
// Convert the integer into float with the specified range:
|
|
|
|
return (((float)n / (float)0x7fffffff) * a_Range);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|