rjpcomputing f076d36e3c Updated stdlib to release 28.
Updated Penlight to 1.3.2.
Updated SubLua to 1.8.10.
2015-03-18 15:36:09 -04:00

194 lines
4.5 KiB
Lua

--- A Set class.
--
-- > Set = require 'pl.Set'
-- > = Set{'one','two'} == Set{'two','one'}
-- true
-- > fruit = Set{'apple','banana','orange'}
-- > = fruit['banana']
-- true
-- > = fruit['hazelnut']
-- nil
-- > colours = Set{'red','orange','green','blue'}
-- > = fruit,colours
-- [apple,orange,banana] [blue,green,orange,red]
-- > = fruit+colours
-- [blue,green,apple,red,orange,banana]
-- > = fruit*colours
-- [orange]
--
-- Depdencies: `pl.utils`, `pl.tablex`, `pl.class`, (`pl.List` if __tostring is used)
-- @module pl.Set
local tablex = require 'pl.tablex'
local utils = require 'pl.utils'
local array_tostring, concat = utils.array_tostring, table.concat
local tmakeset,deepcompare,merge,keys,difference,tupdate = tablex.makeset,tablex.deepcompare,tablex.merge,tablex.keys,tablex.difference,tablex.update
local Map = require 'pl.Map'
local class = require 'pl.class'
local stdmt = utils.stdmt
local Set = stdmt.Set
-- the Set class --------------------
class(Map,nil,Set)
-- note: Set has _no_ methods!
Set.__index = nil
local function makeset (t)
return setmetatable(t,Set)
end
--- create a set. <br>
-- @param t may be a Set, Map or list-like table.
-- @class function
-- @name Set
function Set:_init (t)
t = t or {}
local mt = getmetatable(t)
if mt == Set or mt == Map then
for k in pairs(t) do self[k] = true end
else
for _,v in ipairs(t) do self[v] = true end
end
end
--- string representation of a set.
-- @within metamethods
function Set:__tostring ()
return '['..concat(array_tostring(Set.values(self)),',')..']'
end
--- get a list of the values in a set.
-- @param self a Set
-- @function Set.values
-- @return a list
Set.values = Map.keys
--- map a function over the values of a set.
-- @param self a Set
-- @param fn a function
-- @param ... extra arguments to pass to the function.
-- @return a new set
function Set.map (self,fn,...)
fn = utils.function_arg(1,fn)
local res = {}
for k in pairs(self) do
res[fn(k,...)] = true
end
return makeset(res)
end
--- union of two sets (also +).
-- @param self a Set
-- @param set another set
-- @return a new set
function Set.union (self,set)
return merge(self,set,true)
end
--- union of sets.
-- @within metamethods
-- @function Set.__add
Set.__add = Set.union
--- intersection of two sets (also *).
-- @param self a Set
-- @param set another set
-- @return a new set
-- @usage
-- > s = Set{10,20,30}
-- > t = Set{20,30,40}
-- > = t
-- [20,30,40]
-- > = Set.intersection(s,t)
-- [30,20]
-- > = s*t
-- [30,20]
function Set.intersection (self,set)
return merge(self,set,false)
end
--- intersection of sets.
-- @within metamethods
-- @function Set.__mul
Set.__mul = Set.intersection
--- new set with elements in the set that are not in the other (also -).
-- @param self a Set
-- @param set another set
-- @return a new set
function Set.difference (self,set)
return difference(self,set,false)
end
--- difference of sets.
-- @within metamethods
-- @function Set.__sub
Set.__sub = Set.difference
-- a new set with elements in _either_ the set _or_ other but not both (also ^).
-- @param self a Set
-- @param set another set
-- @return a new set
function Set.symmetric_difference (self,set)
return difference(self,set,true)
end
--- symmetric difference of sets.
-- @within metamethods
-- @function Set.__pow
Set.__pow = Set.symmetric_difference
--- is the first set a subset of the second (also <)?.
-- @param self a Set
-- @param set another set
-- @return true or false
function Set.issubset (self,set)
for k in pairs(self) do
if not set[k] then return false end
end
return true
end
--- first set subset of second?
-- @within metamethods
-- @function Set.__lt
Set.__lt = Set.issubset
--- is the set empty?.
-- @param self a Set
-- @return true or false
function Set.isempty (self)
return next(self) == nil
end
--- are the sets disjoint? (no elements in common).
-- Uses naive definition, i.e. that intersection is empty
-- @param s1 a Set
-- @param s2 another set
-- @return true or false
function Set.isdisjoint (s1,s2)
return Set.isempty(Set.intersection(s1,s2))
end
--- size of this set (also # for 5.2).
-- @param s a Set
-- @return size
-- @function Set.len
Set.len = tablex.size
--- cardinality of set (5.2).
-- @within metamethods
-- @function Set.__len
Set.__len = Set.len
--- equality between sets.
-- @within metamethods
function Set.__eq (s1,s2)
return Set.issubset(s1,s2) and Set.issubset(s2,s1)
end
return Set