kwolekr 42cf5e972d Improve accuracy and safety of float serialization
Multiplying by a factor of 1/1000.f (rather than dividing by 1000.f) directly
introduces an error of 1 ULP.  With this patch, an exact comparison of a
floating point literal with the deserialized F1000 form representing it is now
guaranteed to be successful.
In addition, the maxmium and minimum safely representible floating point
numbers are now well-defined as constants.
2015-08-01 19:30:08 -04:00

409 lines
9.6 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef UTIL_SERIALIZE_HEADER
#define UTIL_SERIALIZE_HEADER
#include "../irrlichttypes_bloated.h"
#include "../debug.h" // for assert
#include "config.h"
#if HAVE_ENDIAN_H
#include <endian.h>
#include <string.h> // for memcpy
#endif
#include <iostream>
#include <string>
#define FIXEDPOINT_FACTOR 1000.0f
// 0x7FFFFFFF / 1000.0f is not serializable.
// The limited float precision at this magnitude may cause the result to round
// to a greater value than can be represented by a 32 bit integer when increased
// by a factor of FIXEDPOINT_FACTOR. As a result, [F1000_MIN..F1000_MAX] does
// not represent the full range, but rather the largest safe range, of values on
// all supported architectures. Note: This definition makes assumptions on
// platform float-to-int conversion behavior.
#define F1000_MIN ((float)(s32)((-0x7FFFFFFF - 1) / FIXEDPOINT_FACTOR))
#define F1000_MAX ((float)(s32)((0x7FFFFFFF) / FIXEDPOINT_FACTOR))
#define STRING_MAX_LEN 0xFFFF
#define WIDE_STRING_MAX_LEN 0xFFFF
// 64 MB ought to be enough for anybody - Billy G.
#define LONG_STRING_MAX_LEN (64 * 1024 * 1024)
#if HAVE_ENDIAN_H
// use machine native byte swapping routines
// Note: memcpy below is optimized out by modern compilers
inline u16 readU16(const u8 *data)
{
u16 val;
memcpy(&val, data, 2);
return be16toh(val);
}
inline u32 readU32(const u8 *data)
{
u32 val;
memcpy(&val, data, 4);
return be32toh(val);
}
inline u64 readU64(const u8 *data)
{
u64 val;
memcpy(&val, data, 8);
return be64toh(val);
}
inline void writeU16(u8 *data, u16 i)
{
u16 val = htobe16(i);
memcpy(data, &val, 2);
}
inline void writeU32(u8 *data, u32 i)
{
u32 val = htobe32(i);
memcpy(data, &val, 4);
}
inline void writeU64(u8 *data, u64 i)
{
u64 val = htobe64(i);
memcpy(data, &val, 8);
}
#else
// generic byte-swapping implementation
inline u16 readU16(const u8 *data)
{
return
((u16)data[0] << 8) | ((u16)data[1] << 0);
}
inline u32 readU32(const u8 *data)
{
return
((u32)data[0] << 24) | ((u32)data[1] << 16) |
((u32)data[2] << 8) | ((u32)data[3] << 0);
}
inline u64 readU64(const u8 *data)
{
return
((u64)data[0] << 56) | ((u64)data[1] << 48) |
((u64)data[2] << 40) | ((u64)data[3] << 32) |
((u64)data[4] << 24) | ((u64)data[5] << 16) |
((u64)data[6] << 8) | ((u64)data[7] << 0);
}
inline void writeU16(u8 *data, u16 i)
{
data[0] = (i >> 8) & 0xFF;
data[1] = (i >> 0) & 0xFF;
}
inline void writeU32(u8 *data, u32 i)
{
data[0] = (i >> 24) & 0xFF;
data[1] = (i >> 16) & 0xFF;
data[2] = (i >> 8) & 0xFF;
data[3] = (i >> 0) & 0xFF;
}
inline void writeU64(u8 *data, u64 i)
{
data[0] = (i >> 56) & 0xFF;
data[1] = (i >> 48) & 0xFF;
data[2] = (i >> 40) & 0xFF;
data[3] = (i >> 32) & 0xFF;
data[4] = (i >> 24) & 0xFF;
data[5] = (i >> 16) & 0xFF;
data[6] = (i >> 8) & 0xFF;
data[7] = (i >> 0) & 0xFF;
}
#endif // HAVE_ENDIAN_H
//////////////// read routines ////////////////
inline u8 readU8(const u8 *data)
{
return ((u8)data[0] << 0);
}
inline s8 readS8(const u8 *data)
{
return (s8)readU8(data);
}
inline s16 readS16(const u8 *data)
{
return (s16)readU16(data);
}
inline s32 readS32(const u8 *data)
{
return (s32)readU32(data);
}
inline s64 readS64(const u8 *data)
{
return (s64)readU64(data);
}
inline f32 readF1000(const u8 *data)
{
return (f32)readS32(data) / FIXEDPOINT_FACTOR;
}
inline video::SColor readARGB8(const u8 *data)
{
video::SColor p(readU32(data));
return p;
}
inline v2s16 readV2S16(const u8 *data)
{
v2s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
return p;
}
inline v3s16 readV3S16(const u8 *data)
{
v3s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
p.Z = readS16(&data[4]);
return p;
}
inline v2s32 readV2S32(const u8 *data)
{
v2s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
return p;
}
inline v3s32 readV3S32(const u8 *data)
{
v3s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
p.Z = readS32(&data[8]);
return p;
}
inline v2f readV2F1000(const u8 *data)
{
v2f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
return p;
}
inline v3f readV3F1000(const u8 *data)
{
v3f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
p.Z = (float)readF1000(&data[8]);
return p;
}
/////////////// write routines ////////////////
inline void writeU8(u8 *data, u8 i)
{
data[0] = (i >> 0) & 0xFF;
}
inline void writeS8(u8 *data, s8 i)
{
writeU8(data, (u8)i);
}
inline void writeS16(u8 *data, s16 i)
{
writeU16(data, (u16)i);
}
inline void writeS32(u8 *data, s32 i)
{
writeU32(data, (u32)i);
}
inline void writeS64(u8 *data, s64 i)
{
writeU64(data, (u64)i);
}
inline void writeF1000(u8 *data, f32 i)
{
assert(i >= F1000_MIN && i <= F1000_MAX);
writeS32(data, i * FIXEDPOINT_FACTOR);
}
inline void writeARGB8(u8 *data, video::SColor p)
{
writeU32(data, p.color);
}
inline void writeV2S16(u8 *data, v2s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
}
inline void writeV3S16(u8 *data, v3s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
writeS16(&data[4], p.Z);
}
inline void writeV2S32(u8 *data, v2s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
}
inline void writeV3S32(u8 *data, v3s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
writeS32(&data[8], p.Z);
}
inline void writeV2F1000(u8 *data, v2f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
}
inline void writeV3F1000(u8 *data, v3f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
writeF1000(&data[8], p.Z);
}
////
//// Iostream wrapper for data read/write
////
#define MAKE_STREAM_READ_FXN(T, N, S) \
inline T read ## N(std::istream &is) \
{ \
char buf[S] = {0}; \
is.read(buf, sizeof(buf)); \
return read ## N((u8 *)buf); \
}
#define MAKE_STREAM_WRITE_FXN(T, N, S) \
inline void write ## N(std::ostream &os, T val) \
{ \
char buf[S]; \
write ## N((u8 *)buf, val); \
os.write(buf, sizeof(buf)); \
}
MAKE_STREAM_READ_FXN(u8, U8, 1);
MAKE_STREAM_READ_FXN(u16, U16, 2);
MAKE_STREAM_READ_FXN(u32, U32, 4);
MAKE_STREAM_READ_FXN(u64, U64, 8);
MAKE_STREAM_READ_FXN(s8, S8, 1);
MAKE_STREAM_READ_FXN(s16, S16, 2);
MAKE_STREAM_READ_FXN(s32, S32, 4);
MAKE_STREAM_READ_FXN(s64, S64, 8);
MAKE_STREAM_READ_FXN(f32, F1000, 4);
MAKE_STREAM_READ_FXN(v2s16, V2S16, 4);
MAKE_STREAM_READ_FXN(v3s16, V3S16, 6);
MAKE_STREAM_READ_FXN(v2s32, V2S32, 8);
MAKE_STREAM_READ_FXN(v3s32, V3S32, 12);
MAKE_STREAM_READ_FXN(v2f, V2F1000, 8);
MAKE_STREAM_READ_FXN(v3f, V3F1000, 12);
MAKE_STREAM_READ_FXN(video::SColor, ARGB8, 4);
MAKE_STREAM_WRITE_FXN(u8, U8, 1);
MAKE_STREAM_WRITE_FXN(u16, U16, 2);
MAKE_STREAM_WRITE_FXN(u32, U32, 4);
MAKE_STREAM_WRITE_FXN(u64, U64, 8);
MAKE_STREAM_WRITE_FXN(s8, S8, 1);
MAKE_STREAM_WRITE_FXN(s16, S16, 2);
MAKE_STREAM_WRITE_FXN(s32, S32, 4);
MAKE_STREAM_WRITE_FXN(s64, S64, 8);
MAKE_STREAM_WRITE_FXN(f32, F1000, 4);
MAKE_STREAM_WRITE_FXN(v2s16, V2S16, 4);
MAKE_STREAM_WRITE_FXN(v3s16, V3S16, 6);
MAKE_STREAM_WRITE_FXN(v2s32, V2S32, 8);
MAKE_STREAM_WRITE_FXN(v3s32, V3S32, 12);
MAKE_STREAM_WRITE_FXN(v2f, V2F1000, 8);
MAKE_STREAM_WRITE_FXN(v3f, V3F1000, 12);
MAKE_STREAM_WRITE_FXN(video::SColor, ARGB8, 4);
////
//// More serialization stuff
////
// Creates a string with the length as the first two bytes
std::string serializeString(const std::string &plain);
// Creates a string with the length as the first two bytes from wide string
std::string serializeWideString(const std::wstring &plain);
// Reads a string with the length as the first two bytes
std::string deSerializeString(std::istream &is);
// Reads a wide string with the length as the first two bytes
std::wstring deSerializeWideString(std::istream &is);
// Creates a string with the length as the first four bytes
std::string serializeLongString(const std::string &plain);
// Reads a string with the length as the first four bytes
std::string deSerializeLongString(std::istream &is);
// Creates a string encoded in JSON format (almost equivalent to a C string literal)
std::string serializeJsonString(const std::string &plain);
// Reads a string encoded in JSON format
std::string deSerializeJsonString(std::istream &is);
// Creates a string consisting of the hexadecimal representation of `data`
std::string serializeHexString(const std::string &data, bool insert_spaces=false);
// Creates a string containing comma delimited values of a struct whose layout is
// described by the parameter format
bool serializeStructToString(std::string *out,
std::string format, void *value);
// Reads a comma delimited string of values into a struct whose layout is
// decribed by the parameter format
bool deSerializeStringToStruct(std::string valstr,
std::string format, void *out, size_t olen);
#endif