Add Surface-following portal using Moore curves
This commit is contained in:
parent
11a818212a
commit
b9e85582f9
@ -96,11 +96,17 @@ Requiring 14 blocks of ice, but otherwise constructed the same as the portal to
|
||||
end,
|
||||
})
|
||||
|
||||
nether.register_portal("stargate_portal", {
|
||||
|
||||
-- These Moore Curve functions requred by circular_portal's find_surface_anchorPos() will
|
||||
-- be assigned later in this file.
|
||||
local get_moore_distance -- will be function get_moore_distance(cell_count, x, y): integer
|
||||
local get_moore_coords -- will be function get_moore_coords(cell_count, distance): pos2d
|
||||
|
||||
nether.register_portal("circular_portal", {
|
||||
shape = nether.PortalShape_Circular,
|
||||
frame_node_name = "default:stone",
|
||||
frame_node_name = "default:cobble",
|
||||
wormhole_node_color = 4, -- 4 is cyan
|
||||
book_of_portals_pagetext = S([[ ──══♦♦♦◊ Shape testing portal ◊♦♦♦══──
|
||||
book_of_portals_pagetext = S([[ ──══♦♦♦◊ Surface portal ◊♦♦♦══──
|
||||
|
||||
┌═╤═╤═╗
|
||||
┌═┼─┴─┴─┼═╗
|
||||
@ -114,46 +120,188 @@ nether.register_portal("stargate_portal", {
|
||||
|
||||
]] .. "\u{25A9}"),
|
||||
|
||||
is_within_realm = function(pos) -- return true if pos is inside the Nether
|
||||
return pos.y < nether.DEPTH
|
||||
is_within_realm = function(pos)
|
||||
-- Always return true, because these portals always just take you around the surface
|
||||
-- rather than taking you to a realm
|
||||
return true
|
||||
end,
|
||||
|
||||
find_realm_anchorPos = function(surface_anchorPos)
|
||||
-- divide x and z by a factor of 8 to implement Nether fast-travel
|
||||
local destination_pos = vector.divide(surface_anchorPos, nether.FASTTRAVEL_FACTOR)
|
||||
destination_pos.x = math.floor(0.5 + destination_pos.x) -- round to int
|
||||
destination_pos.z = math.floor(0.5 + destination_pos.z) -- round to int
|
||||
destination_pos.y = nether.DEPTH - 1000 -- temp value so find_nearest_working_portal() returns nether portals
|
||||
|
||||
-- a y_factor of 0 makes the search ignore the altitude of the portals (as long as they are in the Nether)
|
||||
local existing_portal_location, existing_portal_orientation = nether.find_nearest_working_portal("stargate_portal", destination_pos, 8, 0)
|
||||
if existing_portal_location ~= nil then
|
||||
return existing_portal_location, existing_portal_orientation
|
||||
else
|
||||
local start_y = nether.DEPTH - math.random(500, 1500) -- Search starting altitude
|
||||
destination_pos.y = nether.find_nether_ground_y(destination_pos.x, destination_pos.z, start_y)
|
||||
return destination_pos
|
||||
end
|
||||
-- This function isn't needed, since this type of portal always goes to the surface
|
||||
minecraft.log("error" , "find_realm_anchorPos called for surface portal")
|
||||
return {x=0, y=0, z=0}
|
||||
end,
|
||||
|
||||
find_surface_anchorPos = function(realm_anchorPos)
|
||||
-- A portal definition doesn't normally need to provide a find_surface_anchorPos() function,
|
||||
-- since find_surface_target_y() will be used by default, but Nether portals also scale position
|
||||
-- to create fast-travel. Defining a custom function also means we can look for existing nearby portals:
|
||||
-- since find_surface_target_y() will be used by default, but these portals travel around the
|
||||
-- surface (following a Moore curve) so will be using a different x and z to realm_anchorPos.
|
||||
|
||||
-- Multiply x and z by a factor of 8 to implement Nether fast-travel
|
||||
local destination_pos = vector.multiply(realm_anchorPos, nether.FASTTRAVEL_FACTOR)
|
||||
destination_pos.x = math.min(30900, math.max(-30900, destination_pos.x)) -- clip to world boundary
|
||||
destination_pos.z = math.min(30900, math.max(-30900, destination_pos.z)) -- clip to world boundary
|
||||
destination_pos.y = 0 -- temp value so find_nearest_working_portal() doesn't return nether portals
|
||||
local cellCount = 512
|
||||
local travelDistanceInCells = 10
|
||||
local maxDistFromOrigin = 30000 -- the world edges are at X=30927, X=−30912, Z=30927 and Z=−30912
|
||||
|
||||
-- a y_factor of 0 makes the search ignore the altitude of the portals (as long as they are outside the Nether)
|
||||
local existing_portal_location, existing_portal_orientation = nether.find_nearest_working_portal("stargate_portal", destination_pos, 8 * nether.FASTTRAVEL_FACTOR, 0)
|
||||
-- clip realm_anchorPos to maxDistFromOrigin, and move the origin so that all values are positive
|
||||
local x = math.min(maxDistFromOrigin, math.max(-maxDistFromOrigin, realm_anchorPos.x)) + maxDistFromOrigin
|
||||
local z = math.min(maxDistFromOrigin, math.max(-maxDistFromOrigin, realm_anchorPos.z)) + maxDistFromOrigin
|
||||
|
||||
local divisor = math.ceil(maxDistFromOrigin * 2 / cellCount)
|
||||
local distance = get_moore_distance(cellCount, math.floor(x / divisor + 0.5), math.floor(z / divisor + 0.5))
|
||||
local destination_distance = (distance + travelDistanceInCells) % (cellCount * cellCount)
|
||||
local moore_pos = get_moore_coords(cellCount, destination_distance)
|
||||
|
||||
-- deterministically look for a location where get_spawn_level() gives us a height
|
||||
local target_x = moore_pos.x * divisor - maxDistFromOrigin
|
||||
local target_z = moore_pos.y * divisor - maxDistFromOrigin
|
||||
|
||||
local prng = PcgRandom( -- seed the prng so that all portals for these Moore Curve coords will use the same random location
|
||||
moore_pos.x * 65732 +
|
||||
moore_pos.y * 729 +
|
||||
minetest.get_mapgen_setting("seed") * 3
|
||||
)
|
||||
|
||||
local radius = divisor / 2 - 2
|
||||
local attemptLimit = 10
|
||||
local adj_x, adj_z
|
||||
for attempt = 1, attemptLimit do
|
||||
adj_x = math.floor(prng:rand_normal_dist(-radius, radius, 2) + 0.5)
|
||||
adj_z = math.floor(prng:rand_normal_dist(-radius, radius, 2) + 0.5)
|
||||
minetest.chat_send_all(attempt .. ": x " .. target_x + adj_x .. ", z " .. target_z + adj_z)
|
||||
if minetest.get_spawn_level(target_x + adj_x, target_z + adj_z) ~= nil then
|
||||
-- found a location which will be at ground level (unless a player has built there)
|
||||
minetest.chat_send_all("x " .. target_x + adj_x .. ", z " .. target_z + adj_z .. " is suitable")
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
local destination_pos = {x = target_x + adj_x, y = 0, z = target_z + adj_z}
|
||||
-- a y_factor of 0 makes the search ignore the altitude of the portals
|
||||
local existing_portal_location, existing_portal_orientation = nether.find_nearest_working_portal("circular_portal", destination_pos, radius, 0)
|
||||
if existing_portal_location ~= nil then
|
||||
return existing_portal_location, existing_portal_orientation
|
||||
else
|
||||
destination_pos.y = nether.find_surface_target_y(destination_pos.x, destination_pos.z, "stargate_portal")
|
||||
destination_pos.y = nether.find_surface_target_y(destination_pos.x, destination_pos.z, "circular_portal")
|
||||
return destination_pos
|
||||
end
|
||||
end
|
||||
})
|
||||
|
||||
|
||||
|
||||
--=========================================--
|
||||
-- Hilbert curve and Moore curve functions --
|
||||
--=========================================--
|
||||
|
||||
-- These are space-filling curves, used by the circular_portal example as a way to determine where
|
||||
-- to place portals. https://en.wikipedia.org/wiki/Moore_curve
|
||||
|
||||
|
||||
-- Flip a quadrant on its diagonal axis
|
||||
-- cell_count is the number of cells across the square is split into, and must be a power of 2
|
||||
-- if flip_twice is true then pos does not change (any even numbers of flips would cancel out)
|
||||
-- if flip_direction is true then the position is flipped along the \ diagonal
|
||||
-- if flip_direction is false then the position is flipped along the / diagonal
|
||||
local function hilbert_flip(cell_count, pos, flip_direction, flip_twice)
|
||||
if not flip_twice then
|
||||
if flip_direction then
|
||||
pos.x = (cell_count - 1) - pos.x;
|
||||
pos.y = (cell_count - 1) - pos.y;
|
||||
end
|
||||
|
||||
local temp_x = pos.x;
|
||||
pos.x = pos.y;
|
||||
pos.y = temp_x;
|
||||
end
|
||||
end
|
||||
|
||||
local function test_bit(cell_count, value, flag)
|
||||
local bit_value = cell_count / 2
|
||||
while bit_value > flag and bit_value >= 1 do
|
||||
if value >= bit_value then value = value - bit_value end
|
||||
bit_value = bit_value / 2
|
||||
end
|
||||
return value >= bit_value
|
||||
end
|
||||
|
||||
-- Converts (x,y) to distance
|
||||
-- starts at bottom left corner, i.e. (0, 0)
|
||||
-- ends at bottom right corner, i.e. (cell_count - 1, 0)
|
||||
local function get_hilbert_distance (cell_count, x, y)
|
||||
local distance = 0
|
||||
local pos = {x=x, y=y}
|
||||
local rx, ry
|
||||
|
||||
local s = cell_count / 2
|
||||
while s > 0 do
|
||||
|
||||
if test_bit(cell_count, pos.x, s) then rx = 1 else rx = 0 end
|
||||
if test_bit(cell_count, pos.y, s) then ry = 1 else ry = 0 end
|
||||
|
||||
local rx_XOR_ry = rx
|
||||
if ry == 1 then rx_XOR_ry = 1 - rx_XOR_ry end -- XOR'd ry against rx
|
||||
|
||||
distance = distance + s * s * (2 * rx + rx_XOR_ry)
|
||||
hilbert_flip(cell_count, pos, rx > 0, ry > 0);
|
||||
|
||||
s = math.floor(s / 2)
|
||||
end
|
||||
return distance;
|
||||
end
|
||||
|
||||
-- Converts distance to (x,y)
|
||||
local function get_hilbert_coords(cell_count, distance)
|
||||
local pos = {x=0, y=0}
|
||||
local rx, ry
|
||||
|
||||
local s = 1
|
||||
while s < cell_count do
|
||||
rx = math.floor(distance / 2) % 2
|
||||
ry = distance % 2
|
||||
if rx == 1 then ry = 1 - ry end -- XOR ry with rx
|
||||
|
||||
hilbert_flip(s, pos, rx > 0, ry > 0);
|
||||
pos.x = pos.x + s * rx
|
||||
pos.y = pos.y + s * ry
|
||||
distance = math.floor(distance / 4)
|
||||
|
||||
s = s * 2
|
||||
end
|
||||
return pos
|
||||
end
|
||||
|
||||
|
||||
-- Converts (x,y) to distance
|
||||
-- A Moore curve is a variation of the Hilbert curve that has the start and
|
||||
-- end next to each other.
|
||||
-- Top middle point is the start/end location
|
||||
get_moore_distance = function(cell_count, x, y)
|
||||
|
||||
local quadLength = cell_count / 2
|
||||
local quadrant = 1 - math.floor(y / quadLength)
|
||||
if math.floor(x / quadLength) == 1 then quadrant = 3 - quadrant end
|
||||
local flipDirection = x < quadLength
|
||||
|
||||
local pos = {x = x % quadLength, y = y % quadLength}
|
||||
hilbert_flip(quadLength, pos, flipDirection, false)
|
||||
|
||||
return (quadrant * quadLength * quadLength) + get_hilbert_distance(quadLength, pos.x, pos.y)
|
||||
end
|
||||
|
||||
|
||||
-- Converts distance to (x,y)
|
||||
-- A Moore curve is a variation of the Hilbert curve that has the start and
|
||||
-- end next to each other.
|
||||
-- Top middle point is the start/end location
|
||||
get_moore_coords = function(cell_count, distance)
|
||||
local quadLength = cell_count / 2
|
||||
local quadDistance = quadLength * quadLength
|
||||
local quadrant = math.floor(distance / quadDistance)
|
||||
local flipDirection = distance * 2 < cell_count * cell_count
|
||||
local pos = get_hilbert_coords(quadLength, distance % quadDistance)
|
||||
hilbert_flip(quadLength, pos, flipDirection, false)
|
||||
|
||||
if quadrant >= 2 then pos.x = pos.x + quadLength end
|
||||
if quadrant % 3 == 0 then pos.y = pos.y + quadLength end
|
||||
|
||||
return pos
|
||||
end
|
Loading…
x
Reference in New Issue
Block a user