Rewrite movement logic again

This commit is contained in:
orwell96 2021-01-02 19:38:38 +01:00
parent 8f4c90c5a5
commit 4f7c1b1b5d

View File

@ -349,27 +349,35 @@ function advtrains.train_step_b(id, train, dtime)
]]--
--- 3. handle velocity influences ---
-- Variables for "desired velocities" of various parts of the code
local v_targets = {} --Table keys: VLEVER_*
local train_moves=(train.velocity~=0)
local v0 = train.velocity
local sit_v_cap = train.max_speed -- Maximum speed in current situation (multiple limit factors)
-- The desired speed change issued by the active control (user or atc)
local ctrl_v_tar -- desired speed which should not be crossed by braking or accelerating
local ctrl_accelerating = false -- whether the train should accelerate
local ctrl_braking = false -- whether the train should brake
local ctrl_lever -- the lever value to use to calculate the acceleration
-- the final speed change after applying LZB
local v_cap -- absolute maximum speed
local v_tar -- desired speed which should not be crossed by braking or accelerating
local accelerating = false-- whether the train should accelerate
local braking = false -- whether the train should brake
local lever -- the lever value to use to calculate the acceleration
local train_moves = (v0 > 0)
if train.recently_collided_with_env then
if not train_moves then
train.recently_collided_with_env=nil--reset status when stopped
end
atprint("in train_step_b: applying collided_with_env")
v_target_apply(v_targets, VLEVER_EMERG, 0)
end
if train.locomotives_in_train==0 then
sit_v_cap = 0
elseif train.locomotives_in_train==0 then
atprint("in train_step_b: applying no_locomotives")
v_target_apply(v_targets, VLEVER_ROLL, 0)
end
sit_v_cap = 0
-- interlocking speed restriction
if train.speed_restriction then
elseif train.speed_restriction then
atprint("in train_step_b: applying interlocking speed restriction",train.speed_restriction)
v_target_apply(v_targets, VLEVER_BRAKE, train.speed_restriction)
sit_v_cap = train.speed_restriction
end
--apply off-track handling:
@ -377,23 +385,27 @@ function advtrains.train_step_b(id, train, dtime)
local back_off_track=train.end_index<train.path_trk_b
train.off_track = front_off_track or back_off_track
if back_off_track then
if back_off_track and (not v_cap or v_cap > 1) then
atprint("in train_step_b: applying back_off_track")
v_target_apply(v_targets, VLEVER_EMERG, 1)
else
if front_off_track then
sit_v_cap = 1
elseif front_off_track then
atprint("in train_step_b: applying front_off_track")
v_target_apply(v_targets, VLEVER_EMERG, 0)
end
sit_v_cap = 0
end
--interpret ATC command and apply auto-lever control when not actively controlled
local v0 = train.velocity
if train.ctrl_user then
atprint("in train_step_b: ctrl_user active, resetting atc")
local userc = train.ctrl_user
if userc then
atprint("in train_step_b: ctrl_user active",userc)
advtrains.atc.train_reset_command(train)
if userc >= VLEVER_ACCEL then
ctrl_accelerating = true
else
ctrl_braking = true
end
ctrl_lever = userc
else
if train.atc_command then
if (not train.atc_delay or train.atc_delay<=0) and not train.atc_wait_finish then
@ -428,88 +440,49 @@ function advtrains.train_step_b(id, train, dtime)
if train.tarvelocity and train.tarvelocity>v0 then
atprint("in train_step_b: applying ATC ACCEL", train.tarvelocity)
v_target_apply(v_targets, VLEVER_ACCEL, train.tarvelocity)
end
if train.tarvelocity and train.tarvelocity<v0 then
ctrl_accelerating = true
ctrl_lever = VLEVER_ACCEL
elseif train.tarvelocity and train.tarvelocity<v0 then
ctrl_braking = true
if (braketar and braketar<v0) then
if emerg then
atprint("in train_step_b: applying ATC EMERG", train.tarvelocity)
v_target_apply(v_targets, VLEVER_EMERG, 0)
ctrl_lever = VLEVER_EMERG
else
atprint("in train_step_b: applying ATC BRAKE", train.tarvelocity)
v_target_apply(v_targets, VLEVER_BRAKE, braketar)
ctrl_v_tar = braketar
ctrl_lever = VLEVER_BRAKE
end
else
atprint("in train_step_b: applying ATC ROLL", train.tarvelocity)
v_target_apply(v_targets, VLEVER_ROLL, train.tarvelocity)
ctrl_v_tar = train.tarvelocity
ctrl_lever = VLEVER_ROLL
end
end
end
local userc = train.ctrl_user
if userc then
atprint("in train_step_b: applying user control", userc)
v_target_apply(v_targets, userc, userc==VLEVER_ACCEL and train.max_speed or 0)
end
--- 2b. look at v_target, determine the effective v_target and desired acceleration ---
local tv_target, tv_lever
if v_targets[VLEVER_ACCEL] then
if v_targets[VLEVER_ACCEL] > v0 then
tv_target = v_targets[VLEVER_ACCEL]
tv_lever = VLEVER_ACCEL
end
end
for _,lever in ipairs({VLEVER_ROLL, VLEVER_BRAKE, VLEVER_EMERG}) do
if v_targets[lever] then
if v_targets[lever] <= v0 then
if not tv_target then
tv_target = v_targets[lever]
else
tv_target = math.min(v_targets[lever], tv_target)
end
end
if v_targets[lever] < v0 then
tv_lever = lever
end
end
end
atprint("in train_step_b: Resulting control before LZB: lever", tv_lever, "target", tv_target)
atprint("in train_step_b: Resulting control before LZB: accelerating",ctrl_accelerating,"braking",ctrl_braking,"lever", ctrl_lever, "target", ctrl_v_tar)
--train.debug = dump({tv_target,tv_lever})
--- 2c. If no tv_lever set, honor the user control ---
local a_lever = tv_lever
if not tv_lever then
-- default to holding current speed
a_lever = VLEVER_HOLD
end
train.lever = a_lever
atprint("in train_step_b: Current index",train.index,"end",train.end_index,"vel",train.velocity)
atprint("in train_step_b: Current index",train.index,"end",train.end_index,"vel",v0)
--- 3a. calculate the acceleration required to reach the speed restriction in path_speed (LZB) ---
-- Iterates over the path nodes we WOULD pass if we were continuing with the speed assumed by actual_lever
-- Iterates over the path nodes we WOULD pass if we were continuing with the current speed
-- and determines the MINIMUM of path_speed in this range.
-- Then, determines acceleration so that we can reach this 'overridden' target speed in this step (but short-circuited)
local lzb_next_zero_barrier -- if defined, train should not pass this point as it's a 0-LZB
local new_index_v_base -- which v was assumed when curr_tv was calculated
local new_index_curr_tv -- pre-calculated new train index in lzb check
local lzb_v_cap -- the maximum speed that LZB dictates
if not a_lever or a_lever > VLEVER_BRAKE then
-- only needs to run if we're not yet braking anyway
new_index_v_base = v0 + (advtrains.get_acceleration(train, tv_lever) * dtime)
local dst_curr_v = new_index_v_base * dtime
train.dist_moved_this_step = dst_curr_v
local dst_curr_v = v0 * dtime
new_index_curr_tv = advtrains.path_get_index_by_offset(train, train.index, dst_curr_v)
local i = atfloor(train.index)
local lzb_target
local psp
while true do
psp = train.path_speed[i]
if psp then
lzb_target = lzb_target and math.min(lzb_target, psp) or psp
lzb_v_cap = lzb_v_cap and math.min(lzb_v_cap, psp) or psp
if psp == 0 and not lzb_next_zero_barrier then
atprint("in train_step_b: Found zero barrier: ",i)
lzb_next_zero_barrier = i - LZB_ZERO_APPROACH_DIST
@ -521,68 +494,71 @@ function advtrains.train_step_b(id, train, dtime)
i = i + 1
end
atprint("in train_step_b: LZB calculation yields newindex=",new_index_curr_tv," basev=",new_index_v_base," lzbtarget=",lzb_target,"zero_barr=",lzb_next_zero_barrier,"")
if lzb_target and lzb_target <= v0 then
-- apply to tv_target after the actual calculation happened
a_lever = VLEVER_BRAKE
if tv_target and tv_target > lzb_target then
if lzb_target < LZB_ZERO_APPROACH_SPEED and lzb_next_zero_barrier then
if train.index >= lzb_next_zero_barrier then
tv_target = 0
a_lever = VLEVER_BRAKE
atprint("in train_step_b: -!- Hit zero approach barrier -!- applying brake")
--atdebug("zeroappr cancelling train has passed idx=",train.index, "za_idx=",lzb_zeroappr_target_index)
else
-- if we are in front of a zero barrier, make sure we reach it by
-- keeping the velocity at a small value >0
atprint("in train_step_b: In zero approach, applying ZERO_APPROACH_SPEED")
tv_target = LZB_ZERO_APPROACH_SPEED
end
else
atprint("in train_step_b: applying LZB brake to",lzb_target)
tv_target = lzb_target
end
end
-- Case: v0 is below lzb_target, but a_lever is ACCEL and resulting v would be greater than lzb_target
-- limit tv_target to the lzb target.
elseif lzb_target and a_lever >= VLEVER_ACCEL then
tv_target = lzb_target
end
if lzb_next_zero_barrier and train.index < lzb_next_zero_barrier then
lzb_v_cap = LZB_ZERO_APPROACH_SPEED
end
--- 3b. now that we know tv_target and a_lever, calculate effective new v and change it on train
atprint("in train_step_b: Final control: target",tv_target,"lever",a_lever)
atprint("in train_step_b: LZB calculation yields newindex=",new_index_curr_tv,"lzbtarget=",lzb_v_cap,"zero_barr=",lzb_next_zero_barrier,"")
local dv = advtrains.get_acceleration(train, a_lever) * dtime
local v1
local tv_effective = false
if tv_target and (math.abs(dv) > math.abs(tv_target - v0)) then
atprint("in train_step_b: hit tv_target ",tv_target,"with v=",v0, "dv=",dv)
v1 = tv_target
tv_effective = true
else
v1 = v0 +dv
-- We now need to bring ctrl_*, sit_v_cap and lzb_v_cap together to determine the final controls.
local v_cap = sit_v_cap -- always defined, by default train.max_speed
if lzb_v_cap and lzb_v_cap < v_cap then
v_cap = lzb_v_cap
lever = VLEVER_BRAKE -- actually irrelevant, acceleration is not considered anyway unless v_tar is also set.
end
--train.debug = "tv_target="..(tv_target or "nil").." v0="..v0.." v1="..v1
if v1 > train.max_speed then
v1 = train.max_speed
v_tar = ctrl_v_tar
-- if v_cap is smaller than the current speed, we need to brake in all cases.
if v_cap < v0 then
braking = true
lever = VLEVER_BRAKE
-- set v_tar to v_cap to not slow down any further than required.
-- unless control wants us to brake too, then we use control's v_tar.
if not ctrl_v_tar or ctrl_v_tar > v_cap then
v_tar = v_cap
end
else -- else, use what the ctrl says
braking = ctrl_braking
accelerating = ctrl_accelerating and not braking
lever = ctrl_lever
end
train.lever = lever
atprint("in train_step_b: final control: accelerating",accelerating,"braking",braking,"lever", lever, "target", v_tar)
-- reset train acceleration when holding speed
if not braking and not accelerating then
train.acceleration = 0
end
--- 3b. if braking, modify the velocity BEFORE the movement
if braking then
local dv = advtrains.get_acceleration(train, lever) * dtime
local v1 = v0 + dv
if v_tar and v1 < v_tar then
atprint("in train_step_b: Braking: Hit v_tar!")
v1 = v_tar
end
if v1 > v_cap then
atprint("in train_step_b: Braking: Hit v_cap!")
v1 = v_cap
end
if v1 < 0 then
atprint("in train_step_b: Braking: Hit 0!")
v1 = 0
end
train.acceleration = (v1 - v0) / dtime
train.velocity = v1
atprint("in train_step_b: New velocity",v1," (yields acceleration",train.acceleration,")")
atprint("in train_step_b: Braking: New velocity",v1," (yields acceleration",train.acceleration,")")
-- make saved new_index_curr_tv invalid because speed has changed
new_index_curr_tv = nil
end
--- 4. move train ---
-- if we have calculated the new end index before, don't do that again
if not new_index_v_base or new_index_v_base ~= v1 then
local tv_vdiff = advtrains.get_acceleration(train, tv_lever) * dtime
local dst_curr_v = v1 * dtime
train.dist_moved_this_step = dst_curr_v
if not new_index_curr_tv then
local dst_curr_v = train.velocity * dtime
new_index_curr_tv = advtrains.path_get_index_by_offset(train, train.index, dst_curr_v)
atprint("in train_step_b: movement calculation (re)done, yields newindex=",new_index_curr_tv)
else
@ -598,6 +574,24 @@ function advtrains.train_step_b(id, train, dtime)
recalc_end_index(train)
atprint("in train_step_b: New index",train.index,"end",train.end_index,"vel",train.velocity)
--- 4a. if accelerating, modify the velocity AFTER the movement
if accelerating then
local dv = advtrains.get_acceleration(train, lever) * dtime
local v1 = v0 + dv
if v_tar and v1 > v_tar then
atprint("in train_step_b: Accelerating: Hit v_tar!")
v1 = v_tar
end
if v1 > v_cap then
atprint("in train_step_b: Accelerating: Hit v_cap!")
v1 = v_cap
end
train.acceleration = (v1 - v0) / dtime
train.velocity = v1
atprint("in train_step_b: Accelerating: New velocity",v1," (yields acceleration",train.acceleration,")")
end
end
function advtrains.train_step_c(id, train, dtime)