1
0

Vector functions: Fix vector.direction() function, improve documentation (#6801)

vector.direction() now returns a normalised vector with direction p1 to p2.
This commit is contained in:
Paramat 2017-12-21 19:57:42 +00:00 committed by SmallJoker
parent 18b921015a
commit d04c41ad80
2 changed files with 38 additions and 41 deletions

View File

@ -63,34 +63,13 @@ function vector.distance(a, b)
end
function vector.direction(pos1, pos2)
local x_raw = pos2.x - pos1.x
local y_raw = pos2.y - pos1.y
local z_raw = pos2.z - pos1.z
local x_abs = math.abs(x_raw)
local y_abs = math.abs(y_raw)
local z_abs = math.abs(z_raw)
if x_abs >= y_abs and
x_abs >= z_abs then
y_raw = y_raw * (1 / x_abs)
z_raw = z_raw * (1 / x_abs)
x_raw = x_raw / x_abs
end
if y_abs >= x_abs and
y_abs >= z_abs then
x_raw = x_raw * (1 / y_abs)
z_raw = z_raw * (1 / y_abs)
y_raw = y_raw / y_abs
end
if z_abs >= y_abs and
z_abs >= x_abs then
x_raw = x_raw * (1 / z_abs)
y_raw = y_raw * (1 / z_abs)
z_raw = z_raw / z_abs
end
return {x=x_raw, y=y_raw, z=z_raw}
return vector.normalize({
x = pos2.x - pos1.x,
y = pos2.y - pos1.y,
z = pos2.z - pos1.z
})
end
function vector.add(a, b)
if type(b) == "table" then
return {x = a.x + b.x,

View File

@ -2248,25 +2248,43 @@ The following functions provide escape sequences:
Spatial Vectors
---------------
* `vector.new(a[, b, c])`: returns a vector:
For the following functions, `v`, `v1`, `v2` are vectors, `p1`, `p2` are positions:
* `vector.new(a[, b, c])`:
* Returns a vector.
* A copy of `a` if `a` is a vector.
* `{x = a, y = b, z = c}`, if all `a, b, c` are defined
* `vector.direction(p1, p2)`: returns a vector
* `vector.distance(p1, p2)`: returns a number
* `vector.length(v)`: returns a number
* `vector.normalize(v)`: returns a vector
* `vector.floor(v)`: returns a vector, each dimension rounded down
* `vector.round(v)`: returns a vector, each dimension rounded to nearest int
* `vector.apply(v, func)`: returns a vector
* `vector.equals(v1, v2)`: returns a boolean
* `vector.sort(v1, v2)`: returns minp, maxp vectors of the cuboid defined by v1 and v2
* `{x = a, y = b, z = c}`, if all of `a`, `b`, `c` are defined numbers.
* `vector.direction(p1, p2)`:
* Returns a vector of length 1 with direction `p1` to `p2`.
* If `p1` and `p2` are identical, returns `{x = 0, y = 0, z = 0}`.
* `vector.distance(p1, p2)`:
* Returns zero or a positive number, the distance between `p1` and `p2`.
* `vector.length(v)`:
* Returns zero or a positive number, the length of vector `v`.
* `vector.normalize(v)`:
* Returns a vector of length 1 with direction of vector `v`.
* If `v` has zero length, returns `{x = 0, y = 0, z = 0}`.
* `vector.floor(v)`:
* Returns a vector, each dimension rounded down.
* `vector.round(v)`:
* Returns a vector, each dimension rounded to nearest integer.
* `vector.apply(v, func)`:
* Returns a vector where the function `func` has been applied to each component.
* `vector.equals(v1, v2)`:
* Returns a boolean, `true` if the vectors are identical.
* `vector.sort(v1, v2)`:
* Returns in order minp, maxp vectors of the cuboid defined by `v1`, `v2`.
For the following functions `x` can be either a vector or a number:
* `vector.add(v, x)`: returns a vector
* `vector.subtract(v, x)`: returns a vector
* `vector.multiply(v, x)`: returns a scaled vector or Schur product
* `vector.divide(v, x)`: returns a scaled vector or Schur quotient
* `vector.add(v, x)`:
* Returns a vector.
* `vector.subtract(v, x)`:
* Returns a vector.
* `vector.multiply(v, x)`:
* Returns a scaled vector or Schur product.
* `vector.divide(v, x)`:
* Returns a scaled vector or Schur quotient.
Helper functions
----------------