1
0

245 lines
5.4 KiB
Lua
Raw Normal View History

2013-07-07 01:44:33 -04:00
vector = {}
local floor, hypot, round = math.floor, math.hypot, math.round
2020-08-06 19:26:15 +02:00
local min, max, pi = math.min, math.max, math.pi
2013-07-07 01:44:33 -04:00
function vector.new(a, b, c)
if type(a) == "table" then
2013-10-30 15:38:13 -04:00
assert(a.x and a.y and a.z, "Invalid vector passed to vector.new()")
return {x=a.x, y=a.y, z=a.z}
2013-10-30 15:38:13 -04:00
elseif a then
assert(b and c, "Invalid arguments for vector.new()")
return {x=a, y=b, z=c}
2013-07-07 01:44:33 -04:00
end
return {x=0, y=0, z=0}
2013-07-07 01:44:33 -04:00
end
function vector.equals(a, b)
return a.x == b.x and
a.y == b.y and
a.z == b.z
end
function vector.length(v)
2020-08-06 19:26:15 +02:00
return hypot(v.x, hypot(v.y, v.z))
2013-07-07 01:44:33 -04:00
end
function vector.normalize(v)
2013-07-07 02:02:45 -04:00
local len = vector.length(v)
if len == 0 then
2013-10-30 15:38:13 -04:00
return {x=0, y=0, z=0}
2013-07-07 02:02:45 -04:00
else
return vector.divide(v, len)
end
2013-07-07 01:44:33 -04:00
end
function vector.floor(v)
return {
2020-08-06 19:26:15 +02:00
x = floor(v.x),
y = floor(v.y),
z = floor(v.z)
}
end
2013-07-07 01:44:33 -04:00
function vector.round(v)
return {
x = round(v.x),
y = round(v.y),
z = round(v.z)
2013-07-07 01:44:33 -04:00
}
end
function vector.apply(v, func)
return {
x = func(v.x),
y = func(v.y),
z = func(v.z)
}
end
2013-07-07 01:44:33 -04:00
function vector.distance(a, b)
local x = a.x - b.x
local y = a.y - b.y
local z = a.z - b.z
2020-08-06 19:26:15 +02:00
return hypot(x, hypot(y, z))
2013-07-07 01:44:33 -04:00
end
function vector.direction(pos1, pos2)
return vector.normalize({
x = pos2.x - pos1.x,
y = pos2.y - pos1.y,
z = pos2.z - pos1.z
})
2013-07-07 01:44:33 -04:00
end
function vector.angle(a, b)
local dotp = vector.dot(a, b)
local cp = vector.cross(a, b)
local crossplen = vector.length(cp)
return math.atan2(crossplen, dotp)
end
function vector.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
function vector.cross(a, b)
return {
x = a.y * b.z - a.z * b.y,
y = a.z * b.x - a.x * b.z,
z = a.x * b.y - a.y * b.x
}
end
2013-07-07 01:44:33 -04:00
function vector.add(a, b)
if type(b) == "table" then
return {x = a.x + b.x,
y = a.y + b.y,
z = a.z + b.z}
2013-07-07 01:44:33 -04:00
else
return {x = a.x + b,
y = a.y + b,
z = a.z + b}
2013-07-07 01:44:33 -04:00
end
end
function vector.subtract(a, b)
if type(b) == "table" then
return {x = a.x - b.x,
y = a.y - b.y,
z = a.z - b.z}
2013-07-07 01:44:33 -04:00
else
return {x = a.x - b,
y = a.y - b,
z = a.z - b}
2013-07-07 01:44:33 -04:00
end
end
function vector.multiply(a, b)
if type(b) == "table" then
return {x = a.x * b.x,
y = a.y * b.y,
z = a.z * b.z}
2013-07-07 01:44:33 -04:00
else
return {x = a.x * b,
y = a.y * b,
z = a.z * b}
2013-07-07 01:44:33 -04:00
end
end
function vector.divide(a, b)
if type(b) == "table" then
return {x = a.x / b.x,
y = a.y / b.y,
z = a.z / b.z}
2013-07-07 01:44:33 -04:00
else
return {x = a.x / b,
y = a.y / b,
z = a.z / b}
2013-07-07 01:44:33 -04:00
end
end
2020-08-29 17:41:29 +02:00
function vector.offset(v, x, y, z)
return {x = v.x + x,
y = v.y + y,
z = v.z + z}
end
function vector.sort(a, b)
2020-08-06 19:26:15 +02:00
return {x = min(a.x, b.x), y = min(a.y, b.y), z = min(a.z, b.z)},
{x = max(a.x, b.x), y = max(a.y, b.y), z = max(a.z, b.z)}
end
Some vector functions useful for working with rotations (#9572) * added vector.rotate * added vector.forward_from_rotation and vector.up_from_rotation * added vector.forward_up_to_rotatiton * fixed some bugs and formatting with vector functions * shortened name of some new vector functions and added documentation * made vector.rotate not require a unit vector as axis * fixed crash with vector.forward_up_to_rot * renamed new vector functions, made vector.rotate apply a rotation matrix, old vector.rotate is now called vector.rotate_around_axis * documented vector function changes * removed some whitespace to appease luacheck * implemented and fixed optimization of vector.rotate_around_axis by SmallJoker * added some unit tests for rotation vector functions * clarified that rotation vectors are in radians and according to the left hand rule * hopefully appeased luacheck * renamed rotation_to_horizontal to forward_at_rotation, rotation_to_vertical to up_at_rotation * handled cases where sin or cos are 0 in rotation vector functions * added more comments * clarified documentation of rotation vector functions * added more unit tests * changed way in which vector.rotate_around_axis is adjusted for left handed coordinate systems * made vector.rotate_around_axis actually left handed * unrolled matrix multiplication * removed vector.forward_at_rotation and vector.up_at_rotation * prettified vector.rotate_around_axis, made previous commits not break anything * removed references to removed vector.forward_at_rotation and vector.up_at_rotation * removed documentation of removed vector functions * clarified documentation and fixed styling of rotation vector functions * restyled comments minorly * spelling fixes and some hopefully better comments * allowed 'up' to be missing from vector.directions_to_rotation and removed requirement for unit vectors as arguments * made vector.rotate_around_axis() right handed again for consistency * documented previous changes * made matrix multiplication actually multiply * renamed vector.directions_to_rotation() to vector.dir_to_rotation() * optimized a distance comparison * Fixed potential false positive in unit tests. Co-authored-by: NetherEran <nethereran@hotmail.com>
2020-06-09 17:38:39 +00:00
local function sin(x)
2020-08-06 19:26:15 +02:00
if x % pi == 0 then
Some vector functions useful for working with rotations (#9572) * added vector.rotate * added vector.forward_from_rotation and vector.up_from_rotation * added vector.forward_up_to_rotatiton * fixed some bugs and formatting with vector functions * shortened name of some new vector functions and added documentation * made vector.rotate not require a unit vector as axis * fixed crash with vector.forward_up_to_rot * renamed new vector functions, made vector.rotate apply a rotation matrix, old vector.rotate is now called vector.rotate_around_axis * documented vector function changes * removed some whitespace to appease luacheck * implemented and fixed optimization of vector.rotate_around_axis by SmallJoker * added some unit tests for rotation vector functions * clarified that rotation vectors are in radians and according to the left hand rule * hopefully appeased luacheck * renamed rotation_to_horizontal to forward_at_rotation, rotation_to_vertical to up_at_rotation * handled cases where sin or cos are 0 in rotation vector functions * added more comments * clarified documentation of rotation vector functions * added more unit tests * changed way in which vector.rotate_around_axis is adjusted for left handed coordinate systems * made vector.rotate_around_axis actually left handed * unrolled matrix multiplication * removed vector.forward_at_rotation and vector.up_at_rotation * prettified vector.rotate_around_axis, made previous commits not break anything * removed references to removed vector.forward_at_rotation and vector.up_at_rotation * removed documentation of removed vector functions * clarified documentation and fixed styling of rotation vector functions * restyled comments minorly * spelling fixes and some hopefully better comments * allowed 'up' to be missing from vector.directions_to_rotation and removed requirement for unit vectors as arguments * made vector.rotate_around_axis() right handed again for consistency * documented previous changes * made matrix multiplication actually multiply * renamed vector.directions_to_rotation() to vector.dir_to_rotation() * optimized a distance comparison * Fixed potential false positive in unit tests. Co-authored-by: NetherEran <nethereran@hotmail.com>
2020-06-09 17:38:39 +00:00
return 0
else
return math.sin(x)
end
end
local function cos(x)
2020-08-06 19:26:15 +02:00
if x % pi == pi / 2 then
Some vector functions useful for working with rotations (#9572) * added vector.rotate * added vector.forward_from_rotation and vector.up_from_rotation * added vector.forward_up_to_rotatiton * fixed some bugs and formatting with vector functions * shortened name of some new vector functions and added documentation * made vector.rotate not require a unit vector as axis * fixed crash with vector.forward_up_to_rot * renamed new vector functions, made vector.rotate apply a rotation matrix, old vector.rotate is now called vector.rotate_around_axis * documented vector function changes * removed some whitespace to appease luacheck * implemented and fixed optimization of vector.rotate_around_axis by SmallJoker * added some unit tests for rotation vector functions * clarified that rotation vectors are in radians and according to the left hand rule * hopefully appeased luacheck * renamed rotation_to_horizontal to forward_at_rotation, rotation_to_vertical to up_at_rotation * handled cases where sin or cos are 0 in rotation vector functions * added more comments * clarified documentation of rotation vector functions * added more unit tests * changed way in which vector.rotate_around_axis is adjusted for left handed coordinate systems * made vector.rotate_around_axis actually left handed * unrolled matrix multiplication * removed vector.forward_at_rotation and vector.up_at_rotation * prettified vector.rotate_around_axis, made previous commits not break anything * removed references to removed vector.forward_at_rotation and vector.up_at_rotation * removed documentation of removed vector functions * clarified documentation and fixed styling of rotation vector functions * restyled comments minorly * spelling fixes and some hopefully better comments * allowed 'up' to be missing from vector.directions_to_rotation and removed requirement for unit vectors as arguments * made vector.rotate_around_axis() right handed again for consistency * documented previous changes * made matrix multiplication actually multiply * renamed vector.directions_to_rotation() to vector.dir_to_rotation() * optimized a distance comparison * Fixed potential false positive in unit tests. Co-authored-by: NetherEran <nethereran@hotmail.com>
2020-06-09 17:38:39 +00:00
return 0
else
return math.cos(x)
end
end
function vector.rotate_around_axis(v, axis, angle)
local cosangle = cos(angle)
local sinangle = sin(angle)
axis = vector.normalize(axis)
-- https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
local dot_axis = vector.multiply(axis, vector.dot(axis, v))
local cross = vector.cross(v, axis)
return vector.new(
cross.x * sinangle + (v.x - dot_axis.x) * cosangle + dot_axis.x,
cross.y * sinangle + (v.y - dot_axis.y) * cosangle + dot_axis.y,
cross.z * sinangle + (v.z - dot_axis.z) * cosangle + dot_axis.z
)
end
function vector.rotate(v, rot)
local sinpitch = sin(-rot.x)
local sinyaw = sin(-rot.y)
local sinroll = sin(-rot.z)
local cospitch = cos(rot.x)
local cosyaw = cos(rot.y)
local cosroll = math.cos(rot.z)
-- Rotation matrix that applies yaw, pitch and roll
local matrix = {
{
sinyaw * sinpitch * sinroll + cosyaw * cosroll,
sinyaw * sinpitch * cosroll - cosyaw * sinroll,
sinyaw * cospitch,
},
{
cospitch * sinroll,
cospitch * cosroll,
-sinpitch,
},
{
cosyaw * sinpitch * sinroll - sinyaw * cosroll,
cosyaw * sinpitch * cosroll + sinyaw * sinroll,
cosyaw * cospitch,
},
}
-- Compute matrix multiplication: `matrix` * `v`
return vector.new(
matrix[1][1] * v.x + matrix[1][2] * v.y + matrix[1][3] * v.z,
matrix[2][1] * v.x + matrix[2][2] * v.y + matrix[2][3] * v.z,
matrix[3][1] * v.x + matrix[3][2] * v.y + matrix[3][3] * v.z
)
end
function vector.dir_to_rotation(forward, up)
forward = vector.normalize(forward)
local rot = {x = math.asin(forward.y), y = -math.atan2(forward.x, forward.z), z = 0}
if not up then
return rot
end
assert(vector.dot(forward, up) < 0.000001,
"Invalid vectors passed to vector.dir_to_rotation().")
up = vector.normalize(up)
-- Calculate vector pointing up with roll = 0, just based on forward vector.
local forwup = vector.rotate({x = 0, y = 1, z = 0}, rot)
-- 'forwup' and 'up' are now in a plane with 'forward' as normal.
-- The angle between them is the absolute of the roll value we're looking for.
rot.z = vector.angle(forwup, up)
-- Since vector.angle never returns a negative value or a value greater
-- than math.pi, rot.z has to be inverted sometimes.
-- To determine wether this is the case, we rotate the up vector back around
-- the forward vector and check if it worked out.
local back = vector.rotate_around_axis(up, forward, -rot.z)
-- We don't use vector.equals for this because of floating point imprecision.
if (back.x - forwup.x) * (back.x - forwup.x) +
(back.y - forwup.y) * (back.y - forwup.y) +
(back.z - forwup.z) * (back.z - forwup.z) > 0.0000001 then
rot.z = -rot.z
end
return rot
end