738fbc66d0
Before, this lua code led to a crash: local pcg = PcgRandom(42) local value = pcg:next() This was because if you called s32 PcgRandom::range(min, max) with the minimum and maximum possible values for s32 integers (which the lua binding code did), u32 PcgRandom::range(bound) got called with 0 as the bound. The bound however is one above the maximum value, so 0 is a "special" value to pass to this function. This commit fixes the lua crash by assigning the RNG's full range to the bound 0, which is also fits to the "maximum is bound - 1" principle, as (u32)-1 is the maximum value in the u32 range.
800 lines
19 KiB
C++
800 lines
19 KiB
C++
/*
|
|
* Minetest
|
|
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
* permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "noise.h"
|
|
#include <iostream>
|
|
#include <string.h> // memset
|
|
#include "debug.h"
|
|
#include "util/numeric.h"
|
|
#include "util/string.h"
|
|
#include "exceptions.h"
|
|
|
|
#define NOISE_MAGIC_X 1619
|
|
#define NOISE_MAGIC_Y 31337
|
|
#define NOISE_MAGIC_Z 52591
|
|
#define NOISE_MAGIC_SEED 1013
|
|
|
|
typedef float (*Interp2dFxn)(
|
|
float v00, float v10, float v01, float v11,
|
|
float x, float y);
|
|
|
|
typedef float (*Interp3dFxn)(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z);
|
|
|
|
float cos_lookup[16] = {
|
|
1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238,
|
|
1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238
|
|
};
|
|
|
|
FlagDesc flagdesc_noiseparams[] = {
|
|
{"defaults", NOISE_FLAG_DEFAULTS},
|
|
{"eased", NOISE_FLAG_EASED},
|
|
{"absvalue", NOISE_FLAG_ABSVALUE},
|
|
{"pointbuffer", NOISE_FLAG_POINTBUFFER},
|
|
{"simplex", NOISE_FLAG_SIMPLEX},
|
|
{NULL, 0}
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
PcgRandom::PcgRandom(u64 state, u64 seq)
|
|
{
|
|
seed(state, seq);
|
|
}
|
|
|
|
void PcgRandom::seed(u64 state, u64 seq)
|
|
{
|
|
m_state = 0U;
|
|
m_inc = (seq << 1u) | 1u;
|
|
next();
|
|
m_state += state;
|
|
next();
|
|
}
|
|
|
|
|
|
u32 PcgRandom::next()
|
|
{
|
|
u64 oldstate = m_state;
|
|
m_state = oldstate * 6364136223846793005ULL + m_inc;
|
|
|
|
u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
|
|
u32 rot = oldstate >> 59u;
|
|
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
|
|
}
|
|
|
|
|
|
u32 PcgRandom::range(u32 bound)
|
|
{
|
|
// If the bound is 0, we cover the whole RNG's range
|
|
if (bound == 0)
|
|
return next();
|
|
/*
|
|
If the bound is not a multiple of the RNG's range, it may cause bias,
|
|
e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
|
|
Using rand() % 3, the number 0 would be twice as likely to appear.
|
|
With a very large RNG range, the effect becomes less prevalent but
|
|
still present. This can be solved by modifying the range of the RNG
|
|
to become a multiple of bound by dropping values above the a threshhold.
|
|
In our example, threshhold == 4 - 3 = 1 % 3 == 1, so reject 0, thus
|
|
making the range 3 with no bias.
|
|
|
|
This loop looks dangerous, but will always terminate due to the
|
|
RNG's property of uniformity.
|
|
*/
|
|
u32 threshhold = -bound % bound;
|
|
u32 r;
|
|
|
|
while ((r = next()) < threshhold)
|
|
;
|
|
|
|
return r % bound;
|
|
}
|
|
|
|
|
|
s32 PcgRandom::range(s32 min, s32 max)
|
|
{
|
|
if (max < min)
|
|
throw PrngException("Invalid range (max < min)");
|
|
|
|
u32 bound = max - min + 1;
|
|
return range(bound) + min;
|
|
}
|
|
|
|
|
|
void PcgRandom::bytes(void *out, size_t len)
|
|
{
|
|
u8 *outb = (u8 *)out;
|
|
int bytes_left = 0;
|
|
u32 r;
|
|
|
|
while (len--) {
|
|
if (bytes_left == 0) {
|
|
bytes_left = sizeof(u32);
|
|
r = next();
|
|
}
|
|
|
|
*outb = r & 0xFF;
|
|
outb++;
|
|
bytes_left--;
|
|
r >>= CHAR_BIT;
|
|
}
|
|
}
|
|
|
|
|
|
s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
|
|
{
|
|
s32 accum = 0;
|
|
for (int i = 0; i != num_trials; i++)
|
|
accum += range(min, max);
|
|
return myround((float)accum / num_trials);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
float noise2d(int x, int y, int seed)
|
|
{
|
|
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)n / 0x40000000;
|
|
}
|
|
|
|
|
|
float noise3d(int x, int y, int z, int seed)
|
|
{
|
|
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)n / 0x40000000;
|
|
}
|
|
|
|
|
|
inline float dotProduct(float vx, float vy, float wx, float wy)
|
|
{
|
|
return vx * wx + vy * wy;
|
|
}
|
|
|
|
|
|
inline float linearInterpolation(float v0, float v1, float t)
|
|
{
|
|
return v0 + (v1 - v0) * t;
|
|
}
|
|
|
|
|
|
inline float biLinearInterpolation(
|
|
float v00, float v10,
|
|
float v01, float v11,
|
|
float x, float y)
|
|
{
|
|
float tx = easeCurve(x);
|
|
float ty = easeCurve(y);
|
|
float u = linearInterpolation(v00, v10, tx);
|
|
float v = linearInterpolation(v01, v11, tx);
|
|
return linearInterpolation(u, v, ty);
|
|
}
|
|
|
|
|
|
inline float biLinearInterpolationNoEase(
|
|
float v00, float v10,
|
|
float v01, float v11,
|
|
float x, float y)
|
|
{
|
|
float u = linearInterpolation(v00, v10, x);
|
|
float v = linearInterpolation(v01, v11, x);
|
|
return linearInterpolation(u, v, y);
|
|
}
|
|
|
|
|
|
float triLinearInterpolation(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float tx = easeCurve(x);
|
|
float ty = easeCurve(y);
|
|
float tz = easeCurve(z);
|
|
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
|
|
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
|
|
return linearInterpolation(u, v, tz);
|
|
}
|
|
|
|
float triLinearInterpolationNoEase(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
|
|
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
|
|
return linearInterpolation(u, v, z);
|
|
}
|
|
|
|
float noise2d_gradient(float x, float y, int seed, bool eased)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
// Get values for corners of square
|
|
float v00 = noise2d(x0, y0, seed);
|
|
float v10 = noise2d(x0+1, y0, seed);
|
|
float v01 = noise2d(x0, y0+1, seed);
|
|
float v11 = noise2d(x0+1, y0+1, seed);
|
|
// Interpolate
|
|
if (eased)
|
|
return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
|
|
else
|
|
return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
|
|
}
|
|
|
|
|
|
float noise3d_gradient(float x, float y, float z, int seed, bool eased)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
int z0 = myfloor(z);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
float zl = z - (float)z0;
|
|
// Get values for corners of cube
|
|
float v000 = noise3d(x0, y0, z0, seed);
|
|
float v100 = noise3d(x0 + 1, y0, z0, seed);
|
|
float v010 = noise3d(x0, y0 + 1, z0, seed);
|
|
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
|
|
float v001 = noise3d(x0, y0, z0 + 1, seed);
|
|
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
|
|
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
|
|
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
|
|
// Interpolate
|
|
if (eased) {
|
|
return triLinearInterpolation(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
xl, yl, zl);
|
|
} else {
|
|
return triLinearInterpolationNoEase(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
xl, yl, zl);
|
|
}
|
|
}
|
|
|
|
|
|
float noise2d_perlin(float x, float y, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise2d_perlin_abs(float x, float y, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++) {
|
|
a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise3d_perlin(float x, float y, float z, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++) {
|
|
a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise3d_perlin_abs(float x, float y, float z, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++) {
|
|
a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float contour(float v)
|
|
{
|
|
v = fabs(v);
|
|
if (v >= 1.0)
|
|
return 0.0;
|
|
return (1.0 - v);
|
|
}
|
|
|
|
|
|
///////////////////////// [ New noise ] ////////////////////////////
|
|
|
|
|
|
float NoisePerlin2D(NoiseParams *np, float x, float y, int seed)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
seed += np->seed;
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
float noiseval = noise2d_gradient(x * f, y * f, seed + i,
|
|
np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
|
noiseval = fabs(noiseval);
|
|
|
|
a += g * noiseval;
|
|
f *= np->lacunarity;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return np->offset + a * np->scale;
|
|
}
|
|
|
|
|
|
float NoisePerlin3D(NoiseParams *np, float x, float y, float z, int seed)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
z /= np->spread.Z;
|
|
seed += np->seed;
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
|
|
np->flags & NOISE_FLAG_EASED);
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
|
noiseval = fabs(noiseval);
|
|
|
|
a += g * noiseval;
|
|
f *= np->lacunarity;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return np->offset + a * np->scale;
|
|
}
|
|
|
|
|
|
Noise::Noise(NoiseParams *np_, int seed, u32 sx, u32 sy, u32 sz)
|
|
{
|
|
memcpy(&np, np_, sizeof(np));
|
|
this->seed = seed;
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
this->persist_buf = NULL;
|
|
this->gradient_buf = NULL;
|
|
this->result = NULL;
|
|
|
|
allocBuffers();
|
|
}
|
|
|
|
|
|
Noise::~Noise()
|
|
{
|
|
delete[] gradient_buf;
|
|
delete[] persist_buf;
|
|
delete[] noise_buf;
|
|
delete[] result;
|
|
}
|
|
|
|
|
|
void Noise::allocBuffers()
|
|
{
|
|
if (sx < 1)
|
|
sx = 1;
|
|
if (sy < 1)
|
|
sy = 1;
|
|
if (sz < 1)
|
|
sz = 1;
|
|
|
|
this->noise_buf = NULL;
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
delete[] gradient_buf;
|
|
delete[] persist_buf;
|
|
delete[] result;
|
|
|
|
try {
|
|
size_t bufsize = sx * sy * sz;
|
|
this->persist_buf = NULL;
|
|
this->gradient_buf = new float[bufsize];
|
|
this->result = new float[bufsize];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
void Noise::setSize(u32 sx, u32 sy, u32 sz)
|
|
{
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
allocBuffers();
|
|
}
|
|
|
|
|
|
void Noise::setSpreadFactor(v3f spread)
|
|
{
|
|
this->np.spread = spread;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::setOctaves(int octaves)
|
|
{
|
|
this->np.octaves = octaves;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::resizeNoiseBuf(bool is3d)
|
|
{
|
|
//maximum possible spread value factor
|
|
float ofactor = (np.lacunarity > 1.0) ?
|
|
pow(np.lacunarity, np.octaves - 1) :
|
|
np.lacunarity;
|
|
|
|
// noise lattice point count
|
|
// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
|
|
float num_noise_points_x = sx * ofactor / np.spread.X;
|
|
float num_noise_points_y = sy * ofactor / np.spread.Y;
|
|
float num_noise_points_z = sz * ofactor / np.spread.Z;
|
|
|
|
// protect against obviously invalid parameters
|
|
if (num_noise_points_x > 1000000000.f ||
|
|
num_noise_points_y > 1000000000.f ||
|
|
num_noise_points_z > 1000000000.f)
|
|
throw InvalidNoiseParamsException();
|
|
|
|
// + 2 for the two initial endpoints
|
|
// + 1 for potentially crossing a boundary due to offset
|
|
size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
|
|
size_t nly = (size_t)ceil(num_noise_points_y) + 3;
|
|
size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;
|
|
|
|
delete[] noise_buf;
|
|
try {
|
|
noise_buf = new float[nlx * nly * nlz];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* NB: This algorithm is not optimal in terms of space complexity. The entire
|
|
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
|
|
* 2 lines + 2 planes.
|
|
* However, this would require the noise calls to be interposed with the
|
|
* interpolation loops, which may trash the icache, leading to lower overall
|
|
* performance.
|
|
* Another optimization that could save half as many noise calls is to carry over
|
|
* values from the previous noise lattice as midpoints in the new lattice for the
|
|
* next octave.
|
|
*/
|
|
#define idx(x, y) ((y) * nlx + (x))
|
|
void Noise::gradientMap2D(
|
|
float x, float y,
|
|
float step_x, float step_y,
|
|
int seed)
|
|
{
|
|
float v00, v01, v10, v11, u, v, orig_u;
|
|
u32 index, i, j, noisex, noisey;
|
|
u32 nlx, nly;
|
|
s32 x0, y0;
|
|
|
|
bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
|
|
Interp2dFxn interpolate = eased ?
|
|
biLinearInterpolation : biLinearInterpolationNoEase;
|
|
|
|
x0 = floor(x);
|
|
y0 = floor(y);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
orig_u = u;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
nly = (u32)(v + sy * step_y) + 2;
|
|
index = 0;
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v00 = noise_buf[idx(0, noisey)];
|
|
v10 = noise_buf[idx(1, noisey)];
|
|
v01 = noise_buf[idx(0, noisey + 1)];
|
|
v11 = noise_buf[idx(1, noisey + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);
|
|
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v00 = v10;
|
|
v01 = v11;
|
|
v10 = noise_buf[idx(noisex + 1, noisey)];
|
|
v11 = noise_buf[idx(noisex + 1, noisey + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
|
|
void Noise::gradientMap3D(
|
|
float x, float y, float z,
|
|
float step_x, float step_y, float step_z,
|
|
int seed)
|
|
{
|
|
float v000, v010, v100, v110;
|
|
float v001, v011, v101, v111;
|
|
float u, v, w, orig_u, orig_v;
|
|
u32 index, i, j, k, noisex, noisey, noisez;
|
|
u32 nlx, nly, nlz;
|
|
s32 x0, y0, z0;
|
|
|
|
Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
|
|
triLinearInterpolation : triLinearInterpolationNoEase;
|
|
|
|
x0 = floor(x);
|
|
y0 = floor(y);
|
|
z0 = floor(z);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
w = z - (float)z0;
|
|
orig_u = u;
|
|
orig_v = v;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
nly = (u32)(v + sy * step_y) + 2;
|
|
nlz = (u32)(w + sz * step_z) + 2;
|
|
index = 0;
|
|
for (k = 0; k != nlz; k++)
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
noisez = 0;
|
|
for (k = 0; k != sz; k++) {
|
|
v = orig_v;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v000 = noise_buf[idx(0, noisey, noisez)];
|
|
v100 = noise_buf[idx(1, noisey, noisez)];
|
|
v010 = noise_buf[idx(0, noisey + 1, noisez)];
|
|
v110 = noise_buf[idx(1, noisey + 1, noisez)];
|
|
v001 = noise_buf[idx(0, noisey, noisez + 1)];
|
|
v101 = noise_buf[idx(1, noisey, noisez + 1)];
|
|
v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
|
|
v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
gradient_buf[index++] = interpolate(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
u, v, w);
|
|
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v000 = v100;
|
|
v010 = v110;
|
|
v100 = noise_buf[idx(noisex + 1, noisey, noisez)];
|
|
v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
|
|
v001 = v101;
|
|
v011 = v111;
|
|
v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)];
|
|
v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
|
|
w += step_z;
|
|
if (w >= 1.0) {
|
|
w -= 1.0;
|
|
noisez++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
float *Noise::perlinMap2D(float x, float y, float *persistence_map)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy;
|
|
|
|
x /= np.spread.X;
|
|
y /= np.spread.Y;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
if (persistence_map) {
|
|
if (!persist_buf)
|
|
persist_buf = new float[bufsize];
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
persist_buf[i] = 1.0;
|
|
}
|
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
|
gradientMap2D(x * f, y * f,
|
|
f / np.spread.X, f / np.spread.Y,
|
|
seed + np.seed + oct);
|
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
|
|
|
f *= np.lacunarity;
|
|
g *= np.persist;
|
|
}
|
|
|
|
if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy * sz;
|
|
|
|
x /= np.spread.X;
|
|
y /= np.spread.Y;
|
|
z /= np.spread.Z;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
if (persistence_map) {
|
|
if (!persist_buf)
|
|
persist_buf = new float[bufsize];
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
persist_buf[i] = 1.0;
|
|
}
|
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
|
gradientMap3D(x * f, y * f, z * f,
|
|
f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
|
|
seed + np.seed + oct);
|
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
|
|
|
f *= np.lacunarity;
|
|
g *= np.persist;
|
|
}
|
|
|
|
if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void Noise::updateResults(float g, float *gmap,
|
|
float *persistence_map, size_t bufsize)
|
|
{
|
|
// This looks very ugly, but it is 50-70% faster than having
|
|
// conditional statements inside the loop
|
|
if (np.flags & NOISE_FLAG_ABSVALUE) {
|
|
if (persistence_map) {
|
|
for (size_t i = 0; i != bufsize; i++) {
|
|
result[i] += gmap[i] * fabs(gradient_buf[i]);
|
|
gmap[i] *= persistence_map[i];
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * fabs(gradient_buf[i]);
|
|
}
|
|
} else {
|
|
if (persistence_map) {
|
|
for (size_t i = 0; i != bufsize; i++) {
|
|
result[i] += gmap[i] * gradient_buf[i];
|
|
gmap[i] *= persistence_map[i];
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * gradient_buf[i];
|
|
}
|
|
}
|
|
}
|