est31 4e93ba06a7 Don't pass non-const references to collision methods
Non const references cause a lot of confusion with behaviour of code,
and are disallowed by minetest style guide.
2016-01-29 15:53:54 +01:00

552 lines
16 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "collision.h"
#include "mapblock.h"
#include "map.h"
#include "nodedef.h"
#include "gamedef.h"
#include "log.h"
#include "environment.h"
#include "serverobject.h"
#include <vector>
#include <set>
#include "util/timetaker.h"
#include "profiler.h"
// float error is 10 - 9.96875 = 0.03125
//#define COLL_ZERO 0.032 // broken unit tests
#define COLL_ZERO 0
// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
int axisAlignedCollision(
const aabb3f &staticbox, const aabb3f &movingbox,
const v3f &speed, f32 d, f32 *dtime)
{
//TimeTaker tt("axisAlignedCollision");
f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO; // reduce box size for solve collision stuck (flying sand)
f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
aabb3f relbox(
movingbox.MinEdge.X - staticbox.MinEdge.X,
movingbox.MinEdge.Y - staticbox.MinEdge.Y,
movingbox.MinEdge.Z - staticbox.MinEdge.Z,
movingbox.MaxEdge.X - staticbox.MinEdge.X,
movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
movingbox.MaxEdge.Z - staticbox.MinEdge.Z
);
if(speed.X > 0) // Check for collision with X- plane
{
if (relbox.MaxEdge.X <= d) {
*dtime = -relbox.MaxEdge.X / speed.X;
if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 0;
}
else if(relbox.MinEdge.X > xsize)
{
return -1;
}
}
else if(speed.X < 0) // Check for collision with X+ plane
{
if (relbox.MinEdge.X >= xsize - d) {
*dtime = (xsize - relbox.MinEdge.X) / speed.X;
if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 0;
}
else if(relbox.MaxEdge.X < 0)
{
return -1;
}
}
// NO else if here
if(speed.Y > 0) // Check for collision with Y- plane
{
if (relbox.MaxEdge.Y <= d) {
*dtime = -relbox.MaxEdge.Y / speed.Y;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 1;
}
else if(relbox.MinEdge.Y > ysize)
{
return -1;
}
}
else if(speed.Y < 0) // Check for collision with Y+ plane
{
if (relbox.MinEdge.Y >= ysize - d) {
*dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 1;
}
else if(relbox.MaxEdge.Y < 0)
{
return -1;
}
}
// NO else if here
if(speed.Z > 0) // Check for collision with Z- plane
{
if (relbox.MaxEdge.Z <= d) {
*dtime = -relbox.MaxEdge.Z / speed.Z;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
return 2;
}
//else if(relbox.MinEdge.Z > zsize)
//{
// return -1;
//}
}
else if(speed.Z < 0) // Check for collision with Z+ plane
{
if (relbox.MinEdge.Z >= zsize - d) {
*dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
return 2;
}
//else if(relbox.MaxEdge.Z < 0)
//{
// return -1;
//}
}
return -1;
}
// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
const std::vector<aabb3f> &staticboxes,
const aabb3f &movingbox,
f32 y_increase, f32 d)
{
//TimeTaker tt("wouldCollideWithCeiling");
assert(y_increase >= 0); // pre-condition
for(std::vector<aabb3f>::const_iterator
i = staticboxes.begin();
i != staticboxes.end(); ++i)
{
const aabb3f& staticbox = *i;
if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
return true;
}
return false;
}
collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f *pos_f, v3f *speed_f,
v3f accel_f, ActiveObject *self,
bool collideWithObjects)
{
static bool time_notification_done = false;
Map *map = &env->getMap();
//TimeTaker tt("collisionMoveSimple");
ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
collisionMoveResult result;
/*
Calculate new velocity
*/
if (dtime > 0.5) {
if (!time_notification_done) {
time_notification_done = true;
infostream << "collisionMoveSimple: maximum step interval exceeded,"
" lost movement details!"<<std::endl;
}
dtime = 0.5;
} else {
time_notification_done = false;
}
*speed_f += accel_f * dtime;
// If there is no speed, there are no collisions
if (speed_f->getLength() == 0)
return result;
// Limit speed for avoiding hangs
speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
speed_f->X = rangelim(speed_f->X, -5000, 5000);
speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
/*
Collect node boxes in movement range
*/
std::vector<aabb3f> cboxes;
std::vector<bool> is_unloaded;
std::vector<bool> is_step_up;
std::vector<bool> is_object;
std::vector<int> bouncy_values;
std::vector<v3s16> node_positions;
{
//TimeTaker tt2("collisionMoveSimple collect boxes");
ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
v3s16 oldpos_i = floatToInt(*pos_f, BS);
v3s16 newpos_i = floatToInt(*pos_f + *speed_f * dtime, BS);
s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
bool any_position_valid = false;
for(s16 x = min_x; x <= max_x; x++)
for(s16 y = min_y; y <= max_y; y++)
for(s16 z = min_z; z <= max_z; z++)
{
v3s16 p(x,y,z);
bool is_position_valid;
MapNode n = map->getNodeNoEx(p, &is_position_valid);
if (is_position_valid) {
// Object collides into walkable nodes
any_position_valid = true;
const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
if(f.walkable == false)
continue;
int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
for(std::vector<aabb3f>::iterator
i = nodeboxes.begin();
i != nodeboxes.end(); ++i)
{
aabb3f box = *i;
box.MinEdge += v3f(x, y, z)*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
bouncy_values.push_back(n_bouncy_value);
node_positions.push_back(p);
is_object.push_back(false);
}
}
else {
// Collide with unloaded nodes
aabb3f box = getNodeBox(p, BS);
cboxes.push_back(box);
is_unloaded.push_back(true);
is_step_up.push_back(false);
bouncy_values.push_back(0);
node_positions.push_back(p);
is_object.push_back(false);
}
}
// Do not move if world has not loaded yet, since custom node boxes
// are not available for collision detection.
if (!any_position_valid)
return result;
} // tt2
if(collideWithObjects)
{
ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
//TimeTaker tt3("collisionMoveSimple collect object boxes");
/* add object boxes to cboxes */
std::vector<ActiveObject*> objects;
#ifndef SERVER
ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
if (c_env != 0) {
f32 distance = speed_f->getLength();
std::vector<DistanceSortedActiveObject> clientobjects;
c_env->getActiveObjects(*pos_f, distance * 1.5, clientobjects);
for (size_t i=0; i < clientobjects.size(); i++) {
if ((self == 0) || (self != clientobjects[i].obj)) {
objects.push_back((ActiveObject*)clientobjects[i].obj);
}
}
}
else
#endif
{
ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
if (s_env != 0) {
f32 distance = speed_f->getLength();
std::vector<u16> s_objects;
s_env->getObjectsInsideRadius(s_objects, *pos_f, distance * 1.5);
for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
ServerActiveObject *current = s_env->getActiveObject(*iter);
if ((self == 0) || (self != current)) {
objects.push_back((ActiveObject*)current);
}
}
}
}
for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
iter != objects.end(); ++iter) {
ActiveObject *object = *iter;
if (object != NULL) {
aabb3f object_collisionbox;
if (object->getCollisionBox(&object_collisionbox) &&
object->collideWithObjects()) {
cboxes.push_back(object_collisionbox);
is_unloaded.push_back(false);
is_step_up.push_back(false);
bouncy_values.push_back(0);
node_positions.push_back(v3s16(0,0,0));
is_object.push_back(true);
}
}
}
} //tt3
assert(cboxes.size() == is_unloaded.size()); // post-condition
assert(cboxes.size() == is_step_up.size()); // post-condition
assert(cboxes.size() == bouncy_values.size()); // post-condition
assert(cboxes.size() == node_positions.size()); // post-condition
assert(cboxes.size() == is_object.size()); // post-condition
/*
Collision detection
*/
/*
Collision uncertainty radius
Make it a bit larger than the maximum distance of movement
*/
f32 d = pos_max_d * 1.1;
// A fairly large value in here makes moving smoother
//f32 d = 0.15*BS;
// This should always apply, otherwise there are glitches
assert(d > pos_max_d); // invariant
int loopcount = 0;
while(dtime > BS * 1e-10) {
//TimeTaker tt3("collisionMoveSimple dtime loop");
ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
// Avoid infinite loop
loopcount++;
if (loopcount >= 100) {
warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
dtime = 0;
break;
}
aabb3f movingbox = box_0;
movingbox.MinEdge += *pos_f;
movingbox.MaxEdge += *pos_f;
int nearest_collided = -1;
f32 nearest_dtime = dtime;
u32 nearest_boxindex = -1;
/*
Go through every nodebox, find nearest collision
*/
for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
// Ignore if already stepped up this nodebox.
if(is_step_up[boxindex])
continue;
// Find nearest collision of the two boxes (raytracing-like)
f32 dtime_tmp;
int collided = axisAlignedCollision(
cboxes[boxindex], movingbox, *speed_f, d, &dtime_tmp);
if (collided == -1 || dtime_tmp >= nearest_dtime)
continue;
nearest_dtime = dtime_tmp;
nearest_collided = collided;
nearest_boxindex = boxindex;
}
if (nearest_collided == -1) {
// No collision with any collision box.
*pos_f += *speed_f * dtime;
dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers
} else {
// Otherwise, a collision occurred.
const aabb3f& cbox = cboxes[nearest_boxindex];
// Check for stairs.
bool step_up = (nearest_collided != 1) && // must not be Y direction
(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
(!wouldCollideWithCeiling(cboxes, movingbox,
cbox.MaxEdge.Y - movingbox.MinEdge.Y,
d));
// Get bounce multiplier
bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
// Move to the point of collision and reduce dtime by nearest_dtime
if (nearest_dtime < 0) {
// Handle negative nearest_dtime (can be caused by the d allowance)
if (!step_up) {
if (nearest_collided == 0)
pos_f->X += speed_f->X * nearest_dtime;
if (nearest_collided == 1)
pos_f->Y += speed_f->Y * nearest_dtime;
if (nearest_collided == 2)
pos_f->Z += speed_f->Z * nearest_dtime;
}
} else {
*pos_f += *speed_f * nearest_dtime;
dtime -= nearest_dtime;
}
bool is_collision = true;
if (is_unloaded[nearest_boxindex])
is_collision = false;
CollisionInfo info;
if (is_object[nearest_boxindex])
info.type = COLLISION_OBJECT;
else
info.type = COLLISION_NODE;
info.node_p = node_positions[nearest_boxindex];
info.bouncy = bouncy;
info.old_speed = *speed_f;
// Set the speed component that caused the collision to zero
if (step_up) {
// Special case: Handle stairs
is_step_up[nearest_boxindex] = true;
is_collision = false;
} else if(nearest_collided == 0) { // X
if (fabs(speed_f->X) > BS * 3)
speed_f->X *= bounce;
else
speed_f->X = 0;
result.collides = true;
result.collides_xz = true;
}
else if(nearest_collided == 1) { // Y
if (fabs(speed_f->Y) > BS * 3)
speed_f->Y *= bounce;
else
speed_f->Y = 0;
result.collides = true;
} else if(nearest_collided == 2) { // Z
if (fabs(speed_f->Z) > BS * 3)
speed_f->Z *= bounce;
else
speed_f->Z = 0;
result.collides = true;
result.collides_xz = true;
}
info.new_speed = *speed_f;
if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
is_collision = false;
if (is_collision) {
result.collisions.push_back(info);
}
}
}
/*
Final touches: Check if standing on ground, step up stairs.
*/
aabb3f box = box_0;
box.MinEdge += *pos_f;
box.MaxEdge += *pos_f;
for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
const aabb3f& cbox = cboxes[boxindex];
/*
See if the object is touching ground.
Object touches ground if object's minimum Y is near node's
maximum Y and object's X-Z-area overlaps with the node's
X-Z-area.
Use 0.15*BS so that it is easier to get on a node.
*/
if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
cbox.MaxEdge.Z - d > box.MinEdge.Z &&
cbox.MinEdge.Z + d < box.MaxEdge.Z) {
if (is_step_up[boxindex]) {
pos_f->Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
box = box_0;
box.MinEdge += *pos_f;
box.MaxEdge += *pos_f;
}
if (fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.15 * BS) {
result.touching_ground = true;
if (is_object[boxindex])
result.standing_on_object = true;
if (is_unloaded[boxindex])
result.standing_on_unloaded = true;
}
}
}
return result;
}