minetest-engine-minetest/src/content_mapblock.cpp

1898 lines
55 KiB
C++
Raw Normal View History

2011-09-11 18:16:07 +02:00
/*
2013-02-24 18:40:43 +01:00
Minetest
2013-02-24 19:38:45 +01:00
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "content_mapblock.h"
#include "util/numeric.h"
#include "util/directiontables.h"
#include "mapblock_mesh.h" // For MapBlock_LightColor() and MeshCollector
2011-10-12 13:53:38 +03:00
#include "settings.h"
2011-11-14 21:41:30 +02:00
#include "nodedef.h"
#include "client/tile.h"
#include "mesh.h"
#include <IMeshManipulator.h>
#include "client.h"
#include "log.h"
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
#include "noise.h"
// Create a cuboid.
// collector - the MeshCollector for the resulting polygons
// box - the position and size of the box
// tiles - the tiles (materials) to use (for all 6 faces)
// tilecount - number of entries in tiles, 1<=tilecount<=6
// c - colors of the cuboid's six sides
// txc - texture coordinates - this is a list of texture coordinates
// for the opposite corners of each face - therefore, there
// should be (2+2)*6=24 values in the list. Alternatively,
// pass NULL to use the entire texture for each face. The
// order of the faces in the list is up-down-right-left-back-
// front (compatible with ContentFeatures). If you specified
// 0,0,1,1 for each face, that would be the same as
// passing NULL.
// light source - if greater than zero, the box's faces will not be shaded
void makeCuboid(MeshCollector *collector, const aabb3f &box,
TileSpec *tiles, int tilecount, const video::SColor *c,
const f32* txc, const u8 light_source)
{
assert(tilecount >= 1 && tilecount <= 6); // pre-condition
v3f min = box.MinEdge;
v3f max = box.MaxEdge;
if(txc == NULL) {
static const f32 txc_default[24] = {
0,0,1,1,
0,0,1,1,
0,0,1,1,
0,0,1,1,
0,0,1,1,
0,0,1,1
};
txc = txc_default;
}
video::SColor c1 = c[0];
video::SColor c2 = c[1];
video::SColor c3 = c[2];
video::SColor c4 = c[3];
video::SColor c5 = c[4];
video::SColor c6 = c[5];
if (!light_source) {
applyFacesShading(c1, v3f(0, 1, 0));
applyFacesShading(c2, v3f(0, -1, 0));
applyFacesShading(c3, v3f(1, 0, 0));
applyFacesShading(c4, v3f(-1, 0, 0));
applyFacesShading(c5, v3f(0, 0, 1));
applyFacesShading(c6, v3f(0, 0, -1));
}
video::S3DVertex vertices[24] =
{
// up
video::S3DVertex(min.X,max.Y,max.Z, 0,1,0, c1, txc[0],txc[1]),
video::S3DVertex(max.X,max.Y,max.Z, 0,1,0, c1, txc[2],txc[1]),
video::S3DVertex(max.X,max.Y,min.Z, 0,1,0, c1, txc[2],txc[3]),
video::S3DVertex(min.X,max.Y,min.Z, 0,1,0, c1, txc[0],txc[3]),
// down
video::S3DVertex(min.X,min.Y,min.Z, 0,-1,0, c2, txc[4],txc[5]),
video::S3DVertex(max.X,min.Y,min.Z, 0,-1,0, c2, txc[6],txc[5]),
video::S3DVertex(max.X,min.Y,max.Z, 0,-1,0, c2, txc[6],txc[7]),
video::S3DVertex(min.X,min.Y,max.Z, 0,-1,0, c2, txc[4],txc[7]),
// right
video::S3DVertex(max.X,max.Y,min.Z, 1,0,0, c3, txc[ 8],txc[9]),
video::S3DVertex(max.X,max.Y,max.Z, 1,0,0, c3, txc[10],txc[9]),
video::S3DVertex(max.X,min.Y,max.Z, 1,0,0, c3, txc[10],txc[11]),
video::S3DVertex(max.X,min.Y,min.Z, 1,0,0, c3, txc[ 8],txc[11]),
// left
video::S3DVertex(min.X,max.Y,max.Z, -1,0,0, c4, txc[12],txc[13]),
video::S3DVertex(min.X,max.Y,min.Z, -1,0,0, c4, txc[14],txc[13]),
video::S3DVertex(min.X,min.Y,min.Z, -1,0,0, c4, txc[14],txc[15]),
video::S3DVertex(min.X,min.Y,max.Z, -1,0,0, c4, txc[12],txc[15]),
// back
video::S3DVertex(max.X,max.Y,max.Z, 0,0,1, c5, txc[16],txc[17]),
video::S3DVertex(min.X,max.Y,max.Z, 0,0,1, c5, txc[18],txc[17]),
video::S3DVertex(min.X,min.Y,max.Z, 0,0,1, c5, txc[18],txc[19]),
video::S3DVertex(max.X,min.Y,max.Z, 0,0,1, c5, txc[16],txc[19]),
// front
video::S3DVertex(min.X,max.Y,min.Z, 0,0,-1, c6, txc[20],txc[21]),
video::S3DVertex(max.X,max.Y,min.Z, 0,0,-1, c6, txc[22],txc[21]),
video::S3DVertex(max.X,min.Y,min.Z, 0,0,-1, c6, txc[22],txc[23]),
video::S3DVertex(min.X,min.Y,min.Z, 0,0,-1, c6, txc[20],txc[23]),
};
for(int i = 0; i < 6; i++)
2013-03-23 19:17:00 +01:00
{
switch (tiles[MYMIN(i, tilecount-1)].rotation)
2013-03-23 19:17:00 +01:00
{
case 0:
break;
case 1: //R90
for (int x = 0; x < 4; x++)
vertices[i*4+x].TCoords.rotateBy(90,irr::core::vector2df(0, 0));
break;
case 2: //R180
for (int x = 0; x < 4; x++)
vertices[i*4+x].TCoords.rotateBy(180,irr::core::vector2df(0, 0));
break;
case 3: //R270
for (int x = 0; x < 4; x++)
vertices[i*4+x].TCoords.rotateBy(270,irr::core::vector2df(0, 0));
break;
case 4: //FXR90
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.X = 1.0 - vertices[i*4+x].TCoords.X;
2013-03-23 19:17:00 +01:00
vertices[i*4+x].TCoords.rotateBy(90,irr::core::vector2df(0, 0));
}
2013-03-23 19:17:00 +01:00
break;
case 5: //FXR270
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.X = 1.0 - vertices[i*4+x].TCoords.X;
2013-03-23 19:17:00 +01:00
vertices[i*4+x].TCoords.rotateBy(270,irr::core::vector2df(0, 0));
}
2013-03-23 19:17:00 +01:00
break;
case 6: //FYR90
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.Y = 1.0 - vertices[i*4+x].TCoords.Y;
2013-03-23 19:17:00 +01:00
vertices[i*4+x].TCoords.rotateBy(90,irr::core::vector2df(0, 0));
}
2013-03-23 19:17:00 +01:00
break;
case 7: //FYR270
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.Y = 1.0 - vertices[i*4+x].TCoords.Y;
2013-03-23 19:17:00 +01:00
vertices[i*4+x].TCoords.rotateBy(270,irr::core::vector2df(0, 0));
}
2013-03-23 19:17:00 +01:00
break;
case 8: //FX
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.X = 1.0 - vertices[i*4+x].TCoords.X;
}
2013-03-23 19:17:00 +01:00
break;
case 9: //FY
for (int x = 0; x < 4; x++){
vertices[i*4+x].TCoords.Y = 1.0 - vertices[i*4+x].TCoords.Y;
}
2013-03-23 19:17:00 +01:00
break;
default:
break;
}
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
for (s32 j = 0; j < 24; j += 4) {
int tileindex = MYMIN(j / 4, tilecount - 1);
collector->append(tiles[tileindex], vertices + j, 4, indices, 6);
}
}
// Create a cuboid.
// collector - the MeshCollector for the resulting polygons
// box - the position and size of the box
// tiles - the tiles (materials) to use (for all 6 faces)
// tilecount - number of entries in tiles, 1<=tilecount<=6
// c - color of the cuboid
// txc - texture coordinates - this is a list of texture coordinates
// for the opposite corners of each face - therefore, there
// should be (2+2)*6=24 values in the list. Alternatively,
// pass NULL to use the entire texture for each face. The
// order of the faces in the list is up-down-right-left-back-
// front (compatible with ContentFeatures). If you specified
// 0,0,1,1 for each face, that would be the same as
// passing NULL.
// light source - if greater than zero, the box's faces will not be shaded
void makeCuboid(MeshCollector *collector, const aabb3f &box, TileSpec *tiles,
int tilecount, const video::SColor &c, const f32* txc,
const u8 light_source)
{
video::SColor color[6];
for (u8 i = 0; i < 6; i++)
color[i] = c;
makeCuboid(collector, box, tiles, tilecount, color, txc, light_source);
}
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 00:16:31 -08:00
static inline void getNeighborConnectingFace(v3s16 p, INodeDefManager *nodedef,
MeshMakeData *data, MapNode n, int v, int *neighbors)
{
MapNode n2 = data->m_vmanip.getNodeNoEx(p);
if (nodedef->nodeboxConnects(n, n2, v))
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 00:16:31 -08:00
*neighbors |= v;
}
// For use in mapblock_mesh_generate_special
// X,Y,Z of position must be -1,0,1
// This expression is a simplification of
// 3 * 3 * (pos.X + 1) + 3 * (pos.Y + 1) + (pos.Z + 1)
static inline int NeighborToIndex(const v3s16 &pos)
{
return 9 * pos.X + 3 * pos.Y + pos.Z + 13;
}
/*!
* Returns the i-th special tile for a map node.
*/
static TileSpec getSpecialTile(const ContentFeatures &f,
const MapNode &n, u8 i)
{
TileSpec copy = f.special_tiles[i];
if (!copy.has_color)
n.getColor(f, &copy.color);
return copy;
}
/*
TODO: Fix alpha blending for special nodes
Currently only the last element rendered is blended correct
*/
void mapblock_mesh_generate_special(MeshMakeData *data,
MeshCollector &collector)
{
INodeDefManager *nodedef = data->m_client->ndef();
scene::ISceneManager* smgr = data->m_client->getSceneManager();
scene::IMeshManipulator* meshmanip = smgr->getMeshManipulator();
2011-11-14 21:41:30 +02:00
// 0ms
//TimeTaker timer("mapblock_mesh_generate_special()");
/*
Some settings
*/
bool enable_mesh_cache = g_settings->getBool("enable_mesh_cache");
2014-09-16 12:38:37 +02:00
v3s16 blockpos_nodes = data->m_blockpos*MAP_BLOCKSIZE;
2014-09-16 12:38:37 +02:00
for(s16 z = 0; z < MAP_BLOCKSIZE; z++)
for(s16 y = 0; y < MAP_BLOCKSIZE; y++)
for(s16 x = 0; x < MAP_BLOCKSIZE; x++)
{
v3s16 p(x,y,z);
2014-09-16 12:38:37 +02:00
MapNode n = data->m_vmanip.getNodeNoEx(blockpos_nodes + p);
const ContentFeatures &f = nodedef->get(n);
2011-11-15 15:46:52 +02:00
// Only solidness=0 stuff is drawn here
if(f.solidness != 0)
2011-11-15 15:46:52 +02:00
continue;
2014-09-16 12:38:37 +02:00
switch(f.drawtype){
default:
infostream << "Got " << f.drawtype << std::endl;
FATAL_ERROR("Unknown drawtype");
break;
case NDT_AIRLIKE:
break;
case NDT_LIQUID:
{
/*
Add water sources to mesh if using new style
*/
TileSpec tile_liquid = getSpecialTile(f, n, 0);
2013-02-08 23:45:41 +01:00
TileSpec tile_liquid_bfculled = getNodeTile(n, p, v3s16(0,0,0), data);
u16 l = getInteriorLight(n, 0, nodedef);
video::SColor c1 = encode_light_and_color(l,
tile_liquid.color, f.light_source);
video::SColor c2 = encode_light_and_color(l,
tile_liquid_bfculled.color, f.light_source);
2013-02-08 23:45:41 +01:00
bool top_is_same_liquid = false;
MapNode ntop = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(x,y+1,z));
content_t c_flowing = nodedef->getId(f.liquid_alternative_flowing);
content_t c_source = nodedef->getId(f.liquid_alternative_source);
if(ntop.getContent() == c_flowing || ntop.getContent() == c_source)
top_is_same_liquid = true;
2013-02-08 23:45:41 +01:00
/*
Generate sides
*/
v3s16 side_dirs[4] = {
v3s16(1,0,0),
v3s16(-1,0,0),
v3s16(0,0,1),
v3s16(0,0,-1),
};
for(u32 i=0; i<4; i++)
{
v3s16 dir = side_dirs[i];
MapNode neighbor = data->m_vmanip.getNodeNoEx(blockpos_nodes + p + dir);
content_t neighbor_content = neighbor.getContent();
const ContentFeatures &n_feat = nodedef->get(neighbor_content);
MapNode n_top = data->m_vmanip.getNodeNoEx(blockpos_nodes + p + dir+ v3s16(0,1,0));
content_t n_top_c = n_top.getContent();
if(neighbor_content == CONTENT_IGNORE)
continue;
/*
If our topside is liquid and neighbor's topside
is liquid, don't draw side face
*/
if(top_is_same_liquid && (n_top_c == c_flowing ||
n_top_c == c_source || n_top_c == CONTENT_IGNORE))
continue;
// Don't draw face if neighbor is blocking the view
if(n_feat.solidness == 2)
continue;
bool neighbor_is_same_liquid = (neighbor_content == c_source
|| neighbor_content == c_flowing);
// Don't draw any faces if neighbor same is liquid and top is
// same liquid
if(neighbor_is_same_liquid && !top_is_same_liquid)
continue;
// Use backface culled material if neighbor doesn't have a
// solidness of 0
const TileSpec *current_tile = &tile_liquid;
video::SColor *c = &c1;
if(n_feat.solidness != 0 || n_feat.visual_solidness != 0) {
2013-02-08 23:45:41 +01:00
current_tile = &tile_liquid_bfculled;
c = &c2;
}
2013-02-08 23:45:41 +01:00
video::S3DVertex vertices[4] =
{
video::S3DVertex(-BS/2,0,BS/2,0,0,0, *c, 0,1),
video::S3DVertex(BS/2,0,BS/2,0,0,0, *c, 1,1),
video::S3DVertex(BS/2,0,BS/2, 0,0,0, *c, 1,0),
video::S3DVertex(-BS/2,0,BS/2, 0,0,0, *c, 0,0),
2013-02-08 23:45:41 +01:00
};
/*
If our topside is liquid, set upper border of face
at upper border of node
*/
2016-02-21 07:34:29 +01:00
if (top_is_same_liquid) {
vertices[2].Pos.Y = 0.5 * BS;
vertices[3].Pos.Y = 0.5 * BS;
} else {
2013-02-08 23:45:41 +01:00
/*
Otherwise upper position of face is liquid level
*/
2016-02-21 07:34:29 +01:00
vertices[2].Pos.Y = 0.5 * BS;
vertices[3].Pos.Y = 0.5 * BS;
2013-02-08 23:45:41 +01:00
}
/*
If neighbor is liquid, lower border of face is liquid level
*/
2016-02-21 07:34:29 +01:00
if (neighbor_is_same_liquid) {
vertices[0].Pos.Y = 0.5 * BS;
vertices[1].Pos.Y = 0.5 * BS;
} else {
2013-02-08 23:45:41 +01:00
/*
If neighbor is not liquid, lower border of face is
lower border of node
*/
2016-02-21 07:34:29 +01:00
vertices[0].Pos.Y = -0.5 * BS;
vertices[1].Pos.Y = -0.5 * BS;
2013-02-08 23:45:41 +01:00
}
for(s32 j=0; j<4; j++)
{
if(dir == v3s16(0,0,1))
vertices[j].Pos.rotateXZBy(0);
if(dir == v3s16(0,0,-1))
vertices[j].Pos.rotateXZBy(180);
if(dir == v3s16(-1,0,0))
vertices[j].Pos.rotateXZBy(90);
if(dir == v3s16(1,0,-0))
vertices[j].Pos.rotateXZBy(-90);
// Do this to not cause glitches when two liquids are
// side-by-side
/*if(neighbor_is_same_liquid == false){
vertices[j].Pos.X *= 0.98;
vertices[j].Pos.Z *= 0.98;
}*/
vertices[j].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(*current_tile, vertices, 4, indices, 6);
}
/*
Generate top
*/
if(top_is_same_liquid)
continue;
video::S3DVertex vertices[4] =
{
video::S3DVertex(-BS/2,0,BS/2, 0,0,0, c1, 0,1),
video::S3DVertex(BS/2,0,BS/2, 0,0,0, c1, 1,1),
video::S3DVertex(BS/2,0,-BS/2, 0,0,0, c1, 1,0),
video::S3DVertex(-BS/2,0,-BS/2, 0,0,0, c1, 0,0),
};
2016-02-21 07:34:29 +01:00
v3f offset(p.X * BS, (p.Y + 0.5) * BS, p.Z * BS);
for(s32 i=0; i<4; i++)
{
vertices[i].Pos += offset;
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(tile_liquid, vertices, 4, indices, 6);
break;}
case NDT_FLOWINGLIQUID:
{
/*
Add flowing liquid to mesh
*/
TileSpec tile_liquid = getSpecialTile(f, n, 0);
TileSpec tile_liquid_bfculled = getSpecialTile(f, n, 1);
2011-08-15 02:04:56 +03:00
bool top_is_same_liquid = false;
MapNode ntop = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(x,y+1,z));
content_t c_flowing = nodedef->getId(f.liquid_alternative_flowing);
content_t c_source = nodedef->getId(f.liquid_alternative_source);
2011-08-15 02:04:56 +03:00
if(ntop.getContent() == c_flowing || ntop.getContent() == c_source)
top_is_same_liquid = true;
u16 l = 0;
// If this liquid emits light and doesn't contain light, draw
// it at what it emits, for an increased effect
u8 light_source = nodedef->get(n).light_source;
if(light_source != 0){
l = decode_light(light_source);
l = l | (l<<8);
}
// Use the light of the node on top if possible
else if(nodedef->get(ntop).param_type == CPT_LIGHT)
l = getInteriorLight(ntop, 0, nodedef);
2011-08-15 02:04:56 +03:00
// Otherwise use the light of this node (the liquid)
else
l = getInteriorLight(n, 0, nodedef);
video::SColor c1 = encode_light_and_color(l,
tile_liquid.color, f.light_source);
video::SColor c2 = encode_light_and_color(l,
tile_liquid_bfculled.color, f.light_source);
u8 range = rangelim(nodedef->get(c_flowing).liquid_range, 1, 8);
2013-07-16 16:28:18 +02:00
2011-08-15 02:04:56 +03:00
// Neighbor liquid levels (key = relative position)
// Includes current node
struct NeighborData {
f32 level;
content_t content;
u8 flags;
};
NeighborData neighbor_data_matrix[27];
2011-08-15 02:04:56 +03:00
const u8 neighborflag_top_is_same_liquid = 0x01;
v3s16 neighbor_dirs[9] = {
v3s16(0,0,0),
v3s16(0,0,1),
v3s16(0,0,-1),
v3s16(1,0,0),
v3s16(-1,0,0),
v3s16(1,0,1),
v3s16(-1,0,-1),
v3s16(1,0,-1),
v3s16(-1,0,1),
};
for(u32 i=0; i<9; i++)
{
content_t content = CONTENT_AIR;
float level = -0.5 * BS;
u8 flags = 0;
// Check neighbor
v3s16 p2 = p + neighbor_dirs[i];
MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
2011-07-23 16:55:26 +03:00
if(n2.getContent() != CONTENT_IGNORE)
{
2011-07-23 16:55:26 +03:00
content = n2.getContent();
2011-08-15 02:04:56 +03:00
if(n2.getContent() == c_source)
2016-02-21 07:34:29 +01:00
level = 0.5 * BS;
2013-07-16 16:28:18 +02:00
else if(n2.getContent() == c_flowing){
u8 liquid_level = (n2.param2&LIQUID_LEVEL_MASK);
if (liquid_level <= LIQUID_LEVEL_MAX+1-range)
liquid_level = 0;
else
liquid_level -= (LIQUID_LEVEL_MAX+1-range);
2016-02-21 07:34:29 +01:00
level = (-0.5 + ((float)liquid_level + 0.5) / (float)range) * BS;
2013-07-16 16:28:18 +02:00
}
// Check node above neighbor.
// NOTE: This doesn't get executed if neighbor
// doesn't exist
p2.Y += 1;
n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
2011-08-15 02:04:56 +03:00
if(n2.getContent() == c_source ||
n2.getContent() == c_flowing)
flags |= neighborflag_top_is_same_liquid;
}
NeighborData &neighbor_data =
neighbor_data_matrix[NeighborToIndex(neighbor_dirs[i])];
neighbor_data.level = level;
neighbor_data.content = content;
neighbor_data.flags = flags;
}
2011-08-15 02:04:56 +03:00
// Corner heights (average between four liquids)
f32 corner_levels[4];
v3s16 halfdirs[4] = {
v3s16(0,0,0),
v3s16(1,0,0),
v3s16(1,0,1),
v3s16(0,0,1),
};
for(u32 i=0; i<4; i++)
{
v3s16 cornerdir = halfdirs[i];
float cornerlevel = 0;
u32 valid_count = 0;
2011-08-15 17:45:35 +03:00
u32 air_count = 0;
for(u32 j=0; j<4; j++)
{
v3s16 neighbordir = cornerdir - halfdirs[j];
NeighborData &neighbor_data =
neighbor_data_matrix[NeighborToIndex(neighbordir)];
content_t content = neighbor_data.content;
2011-08-15 17:45:35 +03:00
// If top is liquid, draw starting from top of node
if (neighbor_data.flags & neighborflag_top_is_same_liquid)
2011-08-15 17:45:35 +03:00
{
cornerlevel = 0.5*BS;
valid_count = 1;
break;
}
// Source is always the same height
else if(content == c_source)
{
2016-02-21 07:34:29 +01:00
cornerlevel = 0.5 * BS;
valid_count = 1;
break;
}
2011-08-15 17:45:35 +03:00
// Flowing liquid has level information
2011-08-15 02:04:56 +03:00
else if(content == c_flowing)
{
cornerlevel += neighbor_data.level;
valid_count++;
}
else if(content == CONTENT_AIR)
2011-08-15 17:45:35 +03:00
{
air_count++;
}
}
2011-08-15 17:45:35 +03:00
if(air_count >= 2)
2013-03-13 01:18:45 +04:00
cornerlevel = -0.5*BS+0.2;
2011-08-15 17:45:35 +03:00
else if(valid_count > 0)
cornerlevel /= valid_count;
corner_levels[i] = cornerlevel;
}
/*
Generate sides
*/
v3s16 side_dirs[4] = {
v3s16(1,0,0),
v3s16(-1,0,0),
v3s16(0,0,1),
v3s16(0,0,-1),
};
s16 side_corners[4][2] = {
{1, 2},
{3, 0},
{2, 3},
{0, 1},
};
for(u32 i=0; i<4; i++)
{
v3s16 dir = side_dirs[i];
NeighborData& neighbor_data =
neighbor_data_matrix[NeighborToIndex(dir)];
/*
2011-08-15 02:04:56 +03:00
If our topside is liquid and neighbor's topside
is liquid, don't draw side face
*/
if (top_is_same_liquid &&
(neighbor_data.flags & neighborflag_top_is_same_liquid))
continue;
content_t neighbor_content = neighbor_data.content;
2011-11-14 21:41:30 +02:00
const ContentFeatures &n_feat = nodedef->get(neighbor_content);
// Don't draw face if neighbor is blocking the view
if(n_feat.solidness == 2)
continue;
bool neighbor_is_same_liquid = (neighbor_content == c_source
|| neighbor_content == c_flowing);
// Don't draw any faces if neighbor same is liquid and top is
// same liquid
if(neighbor_is_same_liquid == true
&& top_is_same_liquid == false)
continue;
// Use backface culled material if neighbor doesn't have a
// solidness of 0
const TileSpec *current_tile = &tile_liquid;
video::SColor *c = &c1;
if(n_feat.solidness != 0 || n_feat.visual_solidness != 0) {
current_tile = &tile_liquid_bfculled;
c = &c2;
}
video::S3DVertex vertices[4] =
{
video::S3DVertex(-BS/2,0,BS/2, 0,0,0, *c, 0,1),
video::S3DVertex(BS/2,0,BS/2, 0,0,0, *c, 1,1),
video::S3DVertex(BS/2,0,BS/2, 0,0,0, *c, 1,0),
video::S3DVertex(-BS/2,0,BS/2, 0,0,0, *c, 0,0),
};
/*
2011-08-15 02:04:56 +03:00
If our topside is liquid, set upper border of face
at upper border of node
*/
2011-08-15 02:04:56 +03:00
if(top_is_same_liquid)
{
vertices[2].Pos.Y = 0.5*BS;
vertices[3].Pos.Y = 0.5*BS;
}
/*
Otherwise upper position of face is corner levels
*/
else
{
vertices[2].Pos.Y = corner_levels[side_corners[i][0]];
vertices[3].Pos.Y = corner_levels[side_corners[i][1]];
}
/*
2011-08-15 02:04:56 +03:00
If neighbor is liquid, lower border of face is corner
liquid levels
*/
if(neighbor_is_same_liquid)
{
vertices[0].Pos.Y = corner_levels[side_corners[i][1]];
vertices[1].Pos.Y = corner_levels[side_corners[i][0]];
}
/*
2011-08-15 02:04:56 +03:00
If neighbor is not liquid, lower border of face is
lower border of node
*/
else
{
vertices[0].Pos.Y = -0.5*BS;
vertices[1].Pos.Y = -0.5*BS;
}
for(s32 j=0; j<4; j++)
{
if(dir == v3s16(0,0,1))
vertices[j].Pos.rotateXZBy(0);
if(dir == v3s16(0,0,-1))
vertices[j].Pos.rotateXZBy(180);
if(dir == v3s16(-1,0,0))
vertices[j].Pos.rotateXZBy(90);
if(dir == v3s16(1,0,-0))
vertices[j].Pos.rotateXZBy(-90);
// Do this to not cause glitches when two liquids are
// side-by-side
/*if(neighbor_is_same_liquid == false){
vertices[j].Pos.X *= 0.98;
vertices[j].Pos.Z *= 0.98;
}*/
vertices[j].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(*current_tile, vertices, 4, indices, 6);
}
/*
Generate top side, if appropriate
*/
2011-08-15 02:04:56 +03:00
if(top_is_same_liquid == false)
{
video::S3DVertex vertices[4] =
{
video::S3DVertex(-BS/2,0,BS/2, 0,0,0, c1, 0,1),
video::S3DVertex(BS/2,0,BS/2, 0,0,0, c1, 1,1),
video::S3DVertex(BS/2,0,-BS/2, 0,0,0, c1, 1,0),
video::S3DVertex(-BS/2,0,-BS/2, 0,0,0, c1, 0,0),
};
2012-06-16 03:40:45 +03:00
// To get backface culling right, the vertices need to go
// clockwise around the front of the face. And we happened to
// calculate corner levels in exact reverse order.
s32 corner_resolve[4] = {3,2,1,0};
for(s32 i=0; i<4; i++)
{
2011-08-15 02:04:56 +03:00
//vertices[i].Pos.Y += liquid_level;
//vertices[i].Pos.Y += neighbor_levels[v3s16(0,0,0)];
s32 j = corner_resolve[i];
vertices[i].Pos.Y += corner_levels[j];
vertices[i].Pos += intToFloat(p, BS);
}
// Default downwards-flowing texture animation goes from
2012-06-16 03:40:45 +03:00
// -Z towards +Z, thus the direction is +Z.
// Rotate texture to make animation go in flow direction
// Positive if liquid moves towards +Z
2013-08-15 00:55:35 +02:00
f32 dz = (corner_levels[side_corners[3][0]] +
corner_levels[side_corners[3][1]]) -
(corner_levels[side_corners[2][0]] +
corner_levels[side_corners[2][1]]);
2012-06-16 03:40:45 +03:00
// Positive if liquid moves towards +X
2013-08-15 00:55:35 +02:00
f32 dx = (corner_levels[side_corners[1][0]] +
corner_levels[side_corners[1][1]]) -
(corner_levels[side_corners[0][0]] +
corner_levels[side_corners[0][1]]);
2013-08-15 00:55:35 +02:00
f32 tcoord_angle = atan2(dz, dx) * core::RADTODEG ;
v2f tcoord_center(0.5, 0.5);
v2f tcoord_translate(
blockpos_nodes.Z + z,
blockpos_nodes.X + x);
tcoord_translate.rotateBy(tcoord_angle);
tcoord_translate.X -= floor(tcoord_translate.X);
tcoord_translate.Y -= floor(tcoord_translate.Y);
for(s32 i=0; i<4; i++)
2012-06-16 03:40:45 +03:00
{
2013-08-15 00:55:35 +02:00
vertices[i].TCoords.rotateBy(
tcoord_angle,
tcoord_center);
vertices[i].TCoords += tcoord_translate;
2012-06-16 03:40:45 +03:00
}
2013-08-15 00:55:35 +02:00
v2f t = vertices[0].TCoords;
vertices[0].TCoords = vertices[2].TCoords;
vertices[2].TCoords = t;
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(tile_liquid, vertices, 4, indices, 6);
}
break;}
case NDT_GLASSLIKE:
{
TileSpec tile = getNodeTile(n, p, v3s16(0,0,0), data);
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
for(u32 j=0; j<6; j++)
{
2011-11-15 21:36:46 +02:00
// Check this neighbor
v3s16 dir = g_6dirs[j];
v3s16 n2p = blockpos_nodes + p + dir;
2011-11-15 21:36:46 +02:00
MapNode n2 = data->m_vmanip.getNodeNoEx(n2p);
// Don't make face if neighbor is of same type
if(n2.getContent() == n.getContent())
continue;
video::SColor c2=c;
if(!f.light_source)
applyFacesShading(c2, v3f(dir.X, dir.Y, dir.Z));
2011-11-15 21:36:46 +02:00
// The face at Z+
2013-04-25 02:39:21 +02:00
video::S3DVertex vertices[4] = {
video::S3DVertex(-BS/2,-BS/2,BS/2, dir.X,dir.Y,dir.Z, c2, 1,1),
video::S3DVertex(BS/2,-BS/2,BS/2, dir.X,dir.Y,dir.Z, c2, 0,1),
video::S3DVertex(BS/2,BS/2,BS/2, dir.X,dir.Y,dir.Z, c2, 0,0),
video::S3DVertex(-BS/2,BS/2,BS/2, dir.X,dir.Y,dir.Z, c2, 1,0),
};
2011-11-15 21:36:46 +02:00
// Rotations in the g_6dirs format
if(j == 0) // Z+
for(u16 i=0; i<4; i++)
vertices[i].Pos.rotateXZBy(0);
2011-11-15 21:36:46 +02:00
else if(j == 1) // Y+
for(u16 i=0; i<4; i++)
2011-11-15 21:36:46 +02:00
vertices[i].Pos.rotateYZBy(-90);
else if(j == 2) // X+
for(u16 i=0; i<4; i++)
vertices[i].Pos.rotateXZBy(-90);
2011-11-15 21:36:46 +02:00
else if(j == 3) // Z-
for(u16 i=0; i<4; i++)
2011-11-15 21:36:46 +02:00
vertices[i].Pos.rotateXZBy(180);
else if(j == 4) // Y-
for(u16 i=0; i<4; i++)
vertices[i].Pos.rotateYZBy(90);
2011-11-15 21:36:46 +02:00
else if(j == 5) // X-
for(u16 i=0; i<4; i++)
vertices[i].Pos.rotateXZBy(90);
2011-11-15 21:36:46 +02:00
for(u16 i=0; i<4; i++){
vertices[i].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(tile, vertices, 4, indices, 6);
}
break;}
2014-09-27 18:16:26 +02:00
case NDT_GLASSLIKE_FRAMED_OPTIONAL:
// This is always pre-converted to something else
FATAL_ERROR("NDT_GLASSLIKE_FRAMED_OPTIONAL not pre-converted as expected");
2014-09-27 18:16:26 +02:00
break;
2013-04-25 02:39:21 +02:00
case NDT_GLASSLIKE_FRAMED:
{
static const v3s16 dirs[6] = {
v3s16( 0, 1, 0),
v3s16( 0,-1, 0),
v3s16( 1, 0, 0),
v3s16(-1, 0, 0),
v3s16( 0, 0, 1),
v3s16( 0, 0,-1)
};
2014-06-29 10:41:49 +02:00
u16 l = getInteriorLight(n, 1, nodedef);
2014-06-29 10:41:49 +02:00
u8 i;
TileSpec tiles[6];
for (i = 0; i < 6; i++)
tiles[i] = getNodeTile(n, p, dirs[i], data);
video::SColor tile0color = encode_light_and_color(l,
tiles[0].color, f.light_source);
video::SColor tile0colors[6];
for (i = 0; i < 6; i++)
tile0colors[i] = tile0color;
2014-06-29 10:41:49 +02:00
TileSpec glass_tiles[6];
video::SColor glasscolor[6];
2014-06-29 10:41:49 +02:00
if (tiles[1].texture && tiles[2].texture && tiles[3].texture) {
glass_tiles[0] = tiles[2];
glass_tiles[1] = tiles[3];
glass_tiles[2] = tiles[1];
glass_tiles[3] = tiles[1];
glass_tiles[4] = tiles[1];
glass_tiles[5] = tiles[1];
} else {
for (i = 0; i < 6; i++)
glass_tiles[i] = tiles[1];
2014-06-29 10:41:49 +02:00
}
for (i = 0; i < 6; i++)
glasscolor[i] = encode_light_and_color(l, glass_tiles[i].color,
f.light_source);
2014-06-29 10:41:49 +02:00
u8 param2 = n.getParam2();
bool H_merge = ! bool(param2 & 128);
bool V_merge = ! bool(param2 & 64);
param2 = param2 & 63;
2013-04-25 02:39:21 +02:00
v3f pos = intToFloat(p, BS);
2014-06-29 10:41:49 +02:00
static const float a = BS / 2;
static const float g = a - 0.003;
static const float b = .876 * ( BS / 2 );
2013-04-25 02:39:21 +02:00
static const aabb3f frame_edges[12] = {
aabb3f( b, b,-a, a, a, a), // y+
aabb3f(-a, b,-a,-b, a, a), // y+
aabb3f( b,-a,-a, a,-b, a), // y-
aabb3f(-a,-a,-a,-b,-b, a), // y-
aabb3f( b,-a, b, a, a, a), // x+
aabb3f( b,-a,-a, a, a,-b), // x+
aabb3f(-a,-a, b,-b, a, a), // x-
aabb3f(-a,-a,-a,-b, a,-b), // x-
aabb3f(-a, b, b, a, a, a), // z+
aabb3f(-a,-a, b, a,-b, a), // z+
aabb3f(-a,-a,-a, a,-b,-b), // z-
aabb3f(-a, b,-a, a, a,-b) // z-
};
2014-06-29 10:41:49 +02:00
static const aabb3f glass_faces[6] = {
aabb3f(-g, g,-g, g, g, g), // y+
aabb3f(-g,-g,-g, g,-g, g), // y-
aabb3f( g,-g,-g, g, g, g), // x+
aabb3f(-g,-g,-g,-g, g, g), // x-
aabb3f(-g,-g, g, g, g, g), // z+
aabb3f(-g,-g,-g, g, g,-g) // z-
2013-04-25 02:39:21 +02:00
};
2014-06-29 10:41:49 +02:00
// table of node visible faces, 0 = invisible
2013-04-25 02:39:21 +02:00
int visible_faces[6] = {0,0,0,0,0,0};
2014-06-29 10:41:49 +02:00
// table of neighbours, 1 = same type, checked with g_26dirs
2013-04-25 02:39:21 +02:00
int nb[18] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
2014-06-29 10:41:49 +02:00
// g_26dirs to check when only horizontal merge is allowed
int nb_H_dirs[8] = {0,2,3,5,10,11,12,13};
2013-04-25 02:39:21 +02:00
content_t current = n.getContent();
2014-06-29 10:41:49 +02:00
content_t n2c;
2013-04-25 02:39:21 +02:00
MapNode n2;
v3s16 n2p;
2014-06-29 10:41:49 +02:00
// neighbours checks for frames visibility
if (!H_merge && V_merge) {
n2p = blockpos_nodes + p + g_26dirs[1];
2013-04-25 02:39:21 +02:00
n2 = data->m_vmanip.getNodeNoEx(n2p);
2014-06-29 10:41:49 +02:00
n2c = n2.getContent();
2013-04-25 02:39:21 +02:00
if (n2c == current || n2c == CONTENT_IGNORE)
2014-06-29 10:41:49 +02:00
nb[1] = 1;
n2p = blockpos_nodes + p + g_26dirs[4];
2013-04-25 02:39:21 +02:00
n2 = data->m_vmanip.getNodeNoEx(n2p);
2014-06-29 10:41:49 +02:00
n2c = n2.getContent();
if (n2c == current || n2c == CONTENT_IGNORE)
nb[4] = 1;
2014-06-29 10:41:49 +02:00
} else if (H_merge && !V_merge) {
for(i = 0; i < 8; i++) {
n2p = blockpos_nodes + p + g_26dirs[nb_H_dirs[i]];
n2 = data->m_vmanip.getNodeNoEx(n2p);
n2c = n2.getContent();
if (n2c == current || n2c == CONTENT_IGNORE)
nb[nb_H_dirs[i]] = 1;
2014-06-29 10:41:49 +02:00
}
} else if (H_merge && V_merge) {
for(i = 0; i < 18; i++) {
n2p = blockpos_nodes + p + g_26dirs[i];
n2 = data->m_vmanip.getNodeNoEx(n2p);
n2c = n2.getContent();
if (n2c == current || n2c == CONTENT_IGNORE)
nb[i] = 1;
}
2013-04-25 02:39:21 +02:00
}
2014-06-29 10:41:49 +02:00
// faces visibility checks
if (!V_merge) {
visible_faces[0] = 1;
visible_faces[1] = 1;
} else {
for(i = 0; i < 2; i++) {
n2p = blockpos_nodes + p + dirs[i];
n2 = data->m_vmanip.getNodeNoEx(n2p);
n2c = n2.getContent();
if (n2c != current)
visible_faces[i] = 1;
}
}
2014-06-29 10:41:49 +02:00
if (!H_merge) {
visible_faces[2] = 1;
visible_faces[3] = 1;
visible_faces[4] = 1;
visible_faces[5] = 1;
} else {
for(i = 2; i < 6; i++) {
n2p = blockpos_nodes + p + dirs[i];
n2 = data->m_vmanip.getNodeNoEx(n2p);
n2c = n2.getContent();
if (n2c != current)
visible_faces[i] = 1;
}
}
2013-04-25 02:39:21 +02:00
static const u8 nb_triplet[12*3] = {
1,2, 7, 1,5, 6, 4,2,15, 4,5,14,
2,0,11, 2,3,13, 5,0,10, 5,3,12,
0,1, 8, 0,4,16, 3,4,17, 3,1, 9
};
2014-06-29 10:41:49 +02:00
f32 tx1, ty1, tz1, tx2, ty2, tz2;
2013-04-25 02:39:21 +02:00
aabb3f box;
2014-06-29 10:41:49 +02:00
for(i = 0; i < 12; i++)
2013-04-25 02:39:21 +02:00
{
int edge_invisible;
2014-06-29 10:41:49 +02:00
if (nb[nb_triplet[i*3+2]])
edge_invisible = nb[nb_triplet[i*3]] & nb[nb_triplet[i*3+1]];
2013-04-25 02:39:21 +02:00
else
2014-06-29 10:41:49 +02:00
edge_invisible = nb[nb_triplet[i*3]] ^ nb[nb_triplet[i*3+1]];
2013-04-25 02:39:21 +02:00
if (edge_invisible)
continue;
2014-06-29 10:41:49 +02:00
box = frame_edges[i];
2013-04-25 02:39:21 +02:00
box.MinEdge += pos;
box.MaxEdge += pos;
2014-06-29 10:41:49 +02:00
tx1 = (box.MinEdge.X / BS) + 0.5;
ty1 = (box.MinEdge.Y / BS) + 0.5;
tz1 = (box.MinEdge.Z / BS) + 0.5;
tx2 = (box.MaxEdge.X / BS) + 0.5;
ty2 = (box.MaxEdge.Y / BS) + 0.5;
tz2 = (box.MaxEdge.Z / BS) + 0.5;
2013-04-25 02:39:21 +02:00
f32 txc1[24] = {
tx1, 1-tz2, tx2, 1-tz1,
tx1, tz1, tx2, tz2,
tz1, 1-ty2, tz2, 1-ty1,
1-tz2, 1-ty2, 1-tz1, 1-ty1,
1-tx2, 1-ty2, 1-tx1, 1-ty1,
tx1, 1-ty2, tx2, 1-ty1,
};
makeCuboid(&collector, box, &tiles[0], 1, tile0colors,
txc1, f.light_source);
2013-04-25 02:39:21 +02:00
}
2014-06-29 10:41:49 +02:00
for(i = 0; i < 6; i++)
2013-04-25 02:39:21 +02:00
{
2014-06-29 10:41:49 +02:00
if (!visible_faces[i])
2013-04-25 02:39:21 +02:00
continue;
2014-06-29 10:41:49 +02:00
box = glass_faces[i];
2013-04-25 02:39:21 +02:00
box.MinEdge += pos;
box.MaxEdge += pos;
2014-06-29 10:41:49 +02:00
tx1 = (box.MinEdge.X / BS) + 0.5;
ty1 = (box.MinEdge.Y / BS) + 0.5;
tz1 = (box.MinEdge.Z / BS) + 0.5;
tx2 = (box.MaxEdge.X / BS) + 0.5;
ty2 = (box.MaxEdge.Y / BS) + 0.5;
tz2 = (box.MaxEdge.Z / BS) + 0.5;
2013-04-25 02:39:21 +02:00
f32 txc2[24] = {
tx1, 1-tz2, tx2, 1-tz1,
tx1, tz1, tx2, tz2,
tz1, 1-ty2, tz2, 1-ty1,
1-tz2, 1-ty2, 1-tz1, 1-ty1,
1-tx2, 1-ty2, 1-tx1, 1-ty1,
tx1, 1-ty2, tx2, 1-ty1,
};
makeCuboid(&collector, box, &glass_tiles[i], 1, glasscolor,
txc2, f.light_source);
2014-06-29 10:41:49 +02:00
}
if (param2 > 0 && f.special_tiles[0].texture) {
2014-06-29 10:41:49 +02:00
// Interior volume level is in range 0 .. 63,
// convert it to -0.5 .. 0.5
float vlev = (((float)param2 / 63.0 ) * 2.0 - 1.0);
TileSpec tile=getSpecialTile(f, n, 0);
video::SColor special_color = encode_light_and_color(l,
tile.color, f.light_source);
2014-06-29 10:41:49 +02:00
TileSpec interior_tiles[6];
for (i = 0; i < 6; i++)
interior_tiles[i] = tile;
2014-06-29 10:41:49 +02:00
float offset = 0.003;
box = aabb3f(visible_faces[3] ? -b : -a + offset,
visible_faces[1] ? -b : -a + offset,
visible_faces[5] ? -b : -a + offset,
visible_faces[2] ? b : a - offset,
visible_faces[0] ? b * vlev : a * vlev - offset,
visible_faces[4] ? b : a - offset);
box.MinEdge += pos;
box.MaxEdge += pos;
tx1 = (box.MinEdge.X / BS) + 0.5;
ty1 = (box.MinEdge.Y / BS) + 0.5;
tz1 = (box.MinEdge.Z / BS) + 0.5;
tx2 = (box.MaxEdge.X / BS) + 0.5;
ty2 = (box.MaxEdge.Y / BS) + 0.5;
tz2 = (box.MaxEdge.Z / BS) + 0.5;
f32 txc3[24] = {
tx1, 1-tz2, tx2, 1-tz1,
tx1, tz1, tx2, tz2,
tz1, 1-ty2, tz2, 1-ty1,
1-tz2, 1-ty2, 1-tz1, 1-ty1,
1-tx2, 1-ty2, 1-tx1, 1-ty1,
tx1, 1-ty2, tx2, 1-ty1,
};
makeCuboid(&collector, box, interior_tiles, 6, special_color,
txc3, f.light_source);
2013-04-25 02:39:21 +02:00
}
break;}
case NDT_ALLFACES:
{
TileSpec tile_leaves = getNodeTile(n, p,
v3s16(0,0,0), data);
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l,
tile_leaves.color, f.light_source);
v3f pos = intToFloat(p, BS);
aabb3f box(-BS/2,-BS/2,-BS/2,BS/2,BS/2,BS/2);
box.MinEdge += pos;
box.MaxEdge += pos;
makeCuboid(&collector, box, &tile_leaves, 1, c, NULL,
f.light_source);
break;}
case NDT_ALLFACES_OPTIONAL:
// This is always pre-converted to something else
FATAL_ERROR("NDT_ALLFACES_OPTIONAL not pre-converted");
break;
case NDT_TORCHLIKE:
{
v3s16 dir = n.getWallMountedDir(nodedef);
u8 tileindex = 0;
if(dir == v3s16(0,-1,0)){
tileindex = 0; // floor
} else if(dir == v3s16(0,1,0)){
tileindex = 1; // ceiling
// For backwards compatibility
} else if(dir == v3s16(0,0,0)){
tileindex = 0; // floor
} else {
tileindex = 2; // side
}
TileSpec tile = getNodeTileN(n, p, tileindex, data);
tile.material_flags &= ~MATERIAL_FLAG_BACKFACE_CULLING;
tile.material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
float s = BS/2*f.visual_scale;
// Wall at X+ of node
video::S3DVertex vertices[4] =
{
video::S3DVertex(-s,-s,0, 0,0,0, c, 0,1),
video::S3DVertex( s,-s,0, 0,0,0, c, 1,1),
video::S3DVertex( s, s,0, 0,0,0, c, 1,0),
video::S3DVertex(-s, s,0, 0,0,0, c, 0,0),
};
for(s32 i=0; i<4; i++)
{
if(dir == v3s16(1,0,0))
vertices[i].Pos.rotateXZBy(0);
if(dir == v3s16(-1,0,0))
vertices[i].Pos.rotateXZBy(180);
if(dir == v3s16(0,0,1))
vertices[i].Pos.rotateXZBy(90);
if(dir == v3s16(0,0,-1))
vertices[i].Pos.rotateXZBy(-90);
if(dir == v3s16(0,-1,0))
vertices[i].Pos.rotateXZBy(45);
if(dir == v3s16(0,1,0))
vertices[i].Pos.rotateXZBy(-45);
vertices[i].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(tile, vertices, 4, indices, 6);
break;}
case NDT_SIGNLIKE:
{
TileSpec tile = getNodeTileN(n, p, 0, data);
tile.material_flags &= ~MATERIAL_FLAG_BACKFACE_CULLING;
tile.material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
u16 l = getInteriorLight(n, 0, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
float d = (float)BS/16;
float s = BS/2*f.visual_scale;
// Wall at X+ of node
video::S3DVertex vertices[4] =
{
video::S3DVertex(BS/2-d, s, s, 0,0,0, c, 0,0),
video::S3DVertex(BS/2-d, s, -s, 0,0,0, c, 1,0),
video::S3DVertex(BS/2-d, -s, -s, 0,0,0, c, 1,1),
video::S3DVertex(BS/2-d, -s, s, 0,0,0, c, 0,1),
};
v3s16 dir = n.getWallMountedDir(nodedef);
for(s32 i=0; i<4; i++)
{
if(dir == v3s16(1,0,0))
vertices[i].Pos.rotateXZBy(0);
if(dir == v3s16(-1,0,0))
vertices[i].Pos.rotateXZBy(180);
if(dir == v3s16(0,0,1))
vertices[i].Pos.rotateXZBy(90);
if(dir == v3s16(0,0,-1))
vertices[i].Pos.rotateXZBy(-90);
if(dir == v3s16(0,-1,0))
vertices[i].Pos.rotateXYBy(-90);
if(dir == v3s16(0,1,0))
vertices[i].Pos.rotateXYBy(90);
vertices[i].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
// Add to mesh collector
collector.append(tile, vertices, 4, indices, 6);
break;}
case NDT_PLANTLIKE:
{
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
PseudoRandom rng(x<<8 | z | y<<16);
TileSpec tile = getNodeTileN(n, p, 0, data);
tile.material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
2014-10-21 23:06:12 +02:00
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
float s = BS / 2 * f.visual_scale;
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
// add sqrt(2) visual scale
if ((f.param_type_2 == CPT2_MESHOPTIONS) && ((n.param2 & 0x10) != 0))
s *= 1.41421;
float random_offset_X = .0;
float random_offset_Z = .0;
if ((f.param_type_2 == CPT2_MESHOPTIONS) && ((n.param2 & 0x8) != 0)) {
random_offset_X = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
random_offset_Z = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
}
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
for (int j = 0; j < 4; j++) {
video::S3DVertex vertices[4] =
{
video::S3DVertex(-s,-BS/2, 0, 0,0,0, c, 0,1),
video::S3DVertex( s,-BS/2, 0, 0,0,0, c, 1,1),
video::S3DVertex( s,-BS/2 + s*2,0, 0,0,0, c, 1,0),
video::S3DVertex(-s,-BS/2 + s*2,0, 0,0,0, c, 0,0),
};
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
float rotate_degree = 0;
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
u8 p2mesh = 0;
if (f.param_type_2 == CPT2_DEGROTATE)
rotate_degree = n.param2 * 2;
if (f.param_type_2 != CPT2_MESHOPTIONS) {
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
if (j == 0) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(46 + rotate_degree);
} else if (j == 1) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(-44 + rotate_degree);
}
} else {
p2mesh = n.param2 & 0x7;
switch (p2mesh) {
case 0:
// x
if (j == 0) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(46);
} else if (j == 1) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(-44);
}
break;
case 1:
// +
if (j == 0) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(91);
} else if (j == 1) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(1);
}
break;
case 2:
// *
if (j == 0) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(121);
} else if (j == 1) {
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(241);
} else { // (j == 2)
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(1);
}
break;
case 3:
// #
switch (j) {
case 0:
for (u16 i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(1);
vertices[i].Pos.Z += BS / 4;
}
break;
case 1:
for (u16 i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(91);
vertices[i].Pos.X += BS / 4;
}
break;
case 2:
for (u16 i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(181);
vertices[i].Pos.Z -= BS / 4;
}
break;
case 3:
for (u16 i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(271);
vertices[i].Pos.X -= BS / 4;
}
break;
}
break;
case 4:
// outward leaning #-like
switch (j) {
case 0:
for (u16 i = 2; i < 4; i++)
vertices[i].Pos.Z -= BS / 2;
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(1);
break;
case 1:
for (u16 i = 2; i < 4; i++)
vertices[i].Pos.Z -= BS / 2;
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(91);
break;
case 2:
for (u16 i = 2; i < 4; i++)
vertices[i].Pos.Z -= BS / 2;
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(181);
break;
case 3:
for (u16 i = 2; i < 4; i++)
vertices[i].Pos.Z -= BS / 2;
for (u16 i = 0; i < 4; i++)
vertices[i].Pos.rotateXZBy(271);
break;
}
break;
}
}
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
for (int i = 0; i < 4; i++) {
vertices[i].Pos *= f.visual_scale;
vertices[i].Pos.Y += BS/2 * (f.visual_scale - 1);
vertices[i].Pos += intToFloat(p, BS);
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
// move to a random spot to avoid moire
if ((f.param_type_2 == CPT2_MESHOPTIONS) && ((n.param2 & 0x8) != 0)) {
vertices[i].Pos.X += random_offset_X;
vertices[i].Pos.Z += random_offset_Z;
}
// randomly move each face up/down
if ((f.param_type_2 == CPT2_MESHOPTIONS) && ((n.param2 & 0x20) != 0)) {
PseudoRandom yrng(j | x<<16 | z<<8 | y<<24 );
vertices[i].Pos.Y -= BS * ((yrng.next() % 16 / 16.0) * 0.125);
}
}
2014-10-21 23:06:12 +02:00
u16 indices[] = {0, 1, 2, 2, 3, 0};
2014-09-20 07:37:40 +08:00
// Add to mesh collector
collector.append(tile, vertices, 4, indices, 6);
Make plantlike drawtype more fun Adds several new ways that the plantlike drawtype mesh can be changed. This requires paramtype2 = "meshoptions" to be set in the node definition. The drawtype for these nodes should be "plantlike". These modifications are all done using param2. This field is now a complex bitfield that allows some or more of the combinations to be chosen, and the mesh draw code will choose the options based as neeeded for each plantlike node. bit layout: bits 0, 1 and 2 (values 0x1 through 0x7) are for choosing the plant mesh shape: 0 - ordinary plantlike plant ("x" shaped) 1 - ordinary plant, but rotated 45 degrees ("+" shaped) 2 - a plant with 3 faces ("*" shaped) 3 - a plant with 4 faces ("#" shaped) 4 - a plant with 4 faces ("#" shaped, leaning outwards) 5 through 7 are unused and reserved for future mesh shapes. bit 3 (0x8) causes the plant to be randomly offset in the x,z plane. The plant should fall within the 1x1x1 nodebox if regularly sized. bit 4 (0x10) causes the plant mesh to grow by sqrt(2), and will cause the plant mesh to fill out 1x1x1, and appear slightly larger. Texture makers will want to make their plant texture 23x16 pixels to have the best visual fit in 1x1x1 size. bit 5 (0x20) causes each face of the plant to have a slight negative Y offset in position, descending up to 0.125 downwards into the node below. Because this is per face, this causes the plant model to be less symmetric. bit 6 (0x40) through bit 7 (0x80) are unused and reserved for future use. !(https://youtu.be/qWuI664krsI)
2015-12-10 22:58:11 -08:00
// stop adding faces for meshes with less than 4 faces
if (f.param_type_2 == CPT2_MESHOPTIONS) {
if (((p2mesh == 0) || (p2mesh == 1)) && (j == 1))
break;
else if ((p2mesh == 2) && (j == 2))
break;
} else if (j == 1) {
break;
}
2014-09-20 07:37:40 +08:00
}
break;}
case NDT_FIRELIKE:
{
TileSpec tile = getNodeTileN(n, p, 0, data);
tile.material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
2014-09-20 07:37:40 +08:00
float s = BS / 2 * f.visual_scale;
2014-09-20 07:37:40 +08:00
content_t current = n.getContent();
content_t n2c;
MapNode n2;
v3s16 n2p;
static const v3s16 dirs[6] = {
v3s16( 0, 1, 0),
v3s16( 0, -1, 0),
v3s16( 1, 0, 0),
v3s16(-1, 0, 0),
v3s16( 0, 0, 1),
v3s16( 0, 0, -1)
2014-09-20 07:37:40 +08:00
};
int doDraw[6] = {0, 0, 0, 0, 0, 0};
2014-09-20 07:37:40 +08:00
bool drawAllFaces = true;
// Check for adjacent nodes
for (int i = 0; i < 6; i++) {
2014-09-20 07:37:40 +08:00
n2p = blockpos_nodes + p + dirs[i];
n2 = data->m_vmanip.getNodeNoEx(n2p);
n2c = n2.getContent();
if (n2c != CONTENT_IGNORE && n2c != CONTENT_AIR && n2c != current) {
doDraw[i] = 1;
if (drawAllFaces)
2014-09-20 07:37:40 +08:00
drawAllFaces = false;
}
}
for (int j = 0; j < 6; j++) {
2014-09-20 07:37:40 +08:00
video::S3DVertex vertices[4] = {
video::S3DVertex(-s, -BS / 2, 0, 0, 0, 0, c, 0, 1),
video::S3DVertex( s, -BS / 2, 0, 0, 0, 0, c, 1, 1),
video::S3DVertex( s, -BS / 2 + s * 2, 0, 0, 0, 0, c, 1, 0),
video::S3DVertex(-s, -BS / 2 + s * 2, 0, 0, 0, 0, c, 0, 0),
2014-09-20 07:37:40 +08:00
};
// Calculate which faces should be drawn, (top or sides)
if (j == 0 && (drawAllFaces ||
(doDraw[3] == 1 || doDraw[1] == 1))) {
for (int i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(90);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateXYBy(-10);
vertices[i].Pos.X -= 4.0;
2014-09-20 07:37:40 +08:00
}
} else if (j == 1 && (drawAllFaces ||
(doDraw[5] == 1 || doDraw[1] == 1))) {
for (int i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(180);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(10);
vertices[i].Pos.Z -= 4.0;
2014-09-20 07:37:40 +08:00
}
} else if (j == 2 && (drawAllFaces ||
(doDraw[2] == 1 || doDraw[1] == 1))) {
for (int i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(270);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateXYBy(10);
vertices[i].Pos.X += 4.0;
2014-09-20 07:37:40 +08:00
}
} else if (j == 3 && (drawAllFaces ||
(doDraw[4] == 1 || doDraw[1] == 1))) {
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(-10);
vertices[i].Pos.Z += 4.0;
2014-09-20 07:37:40 +08:00
}
// Center cross-flames
} else if (j == 4 && (drawAllFaces || doDraw[1] == 1)) {
for (int i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(45);
2014-09-20 07:37:40 +08:00
}
} else if (j == 5 && (drawAllFaces || doDraw[1] == 1)) {
for (int i = 0; i < 4; i++) {
vertices[i].Pos.rotateXZBy(-45);
2014-09-20 07:37:40 +08:00
}
// Render flames on bottom of node above
} else if (j == 0 && doDraw[0] == 1 && doDraw[1] == 0) {
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(70);
vertices[i].Pos.rotateXZBy(90);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.Y += 4.84;
vertices[i].Pos.X -= 4.7;
2014-09-20 07:37:40 +08:00
}
} else if (j == 1 && doDraw[0] == 1 && doDraw[1] == 0) {
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(70);
vertices[i].Pos.rotateXZBy(180);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.Y += 4.84;
vertices[i].Pos.Z -= 4.7;
2014-09-20 07:37:40 +08:00
}
} else if (j == 2 && doDraw[0] == 1 && doDraw[1] == 0) {
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(70);
vertices[i].Pos.rotateXZBy(270);
2014-09-20 07:37:40 +08:00
vertices[i].Pos.Y += 4.84;
vertices[i].Pos.X += 4.7;
2014-09-20 07:37:40 +08:00
}
} else if (j == 3 && doDraw[0] == 1 && doDraw[1] == 0) {
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos.rotateYZBy(70);
vertices[i].Pos.Y += 4.84;
vertices[i].Pos.Z += 4.7;
2014-09-20 07:37:40 +08:00
}
} else {
2014-09-20 07:37:40 +08:00
// Skip faces that aren't adjacent to a node
continue;
}
for (int i = 0; i < 4; i++) {
2014-09-20 07:37:40 +08:00
vertices[i].Pos *= f.visual_scale;
vertices[i].Pos += intToFloat(p, BS);
}
u16 indices[] = {0, 1, 2, 2, 3, 0};
// Add to mesh collector
collector.append(tile, vertices, 4, indices, 6);
}
break;}
case NDT_FENCELIKE:
2011-07-23 02:04:24 +03:00
{
TileSpec tile = getNodeTile(n, p, v3s16(0,0,0), data);
TileSpec tile_nocrack = tile;
tile_nocrack.material_flags &= ~MATERIAL_FLAG_CRACK;
2014-07-17 13:37:18 +02:00
// Put wood the right way around in the posts
2012-03-29 22:59:43 +03:00
TileSpec tile_rot = tile;
2014-07-17 13:37:18 +02:00
tile_rot.rotation = 1;
u16 l = getInteriorLight(n, 1, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
2011-07-23 02:04:24 +03:00
2012-03-29 22:59:43 +03:00
const f32 post_rad=(f32)BS/8;
const f32 bar_rad=(f32)BS/16;
const f32 bar_len=(f32)(BS/2)-post_rad;
v3f pos = intToFloat(p, BS);
// The post - always present
aabb3f post(-post_rad,-BS/2,-post_rad,post_rad,BS/2,post_rad);
post.MinEdge += pos;
post.MaxEdge += pos;
f32 postuv[24]={
2012-03-29 22:59:43 +03:00
6/16.,6/16.,10/16.,10/16.,
6/16.,6/16.,10/16.,10/16.,
0/16.,0,4/16.,1,
4/16.,0,8/16.,1,
8/16.,0,12/16.,1,
12/16.,0,16/16.,1};
makeCuboid(&collector, post, &tile_rot, 1, c, postuv,
f.light_source);
// Now a section of fence, +X, if there's a post there
v3s16 p2 = p;
p2.X++;
MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
const ContentFeatures *f2 = &nodedef->get(n2);
if(f2->drawtype == NDT_FENCELIKE)
2011-07-23 02:04:24 +03:00
{
aabb3f bar(-bar_len+BS/2,-bar_rad+BS/4,-bar_rad,
bar_len+BS/2,bar_rad+BS/4,bar_rad);
bar.MinEdge += pos;
bar.MaxEdge += pos;
f32 xrailuv[24]={
2012-03-29 22:59:43 +03:00
0/16.,2/16.,16/16.,4/16.,
0/16.,4/16.,16/16.,6/16.,
6/16.,6/16.,8/16.,8/16.,
10/16.,10/16.,12/16.,12/16.,
0/16.,8/16.,16/16.,10/16.,
0/16.,14/16.,16/16.,16/16.};
makeCuboid(&collector, bar, &tile_nocrack, 1,
c, xrailuv, f.light_source);
bar.MinEdge.Y -= BS/2;
bar.MaxEdge.Y -= BS/2;
makeCuboid(&collector, bar, &tile_nocrack, 1,
c, xrailuv, f.light_source);
}
2011-07-23 02:04:24 +03:00
// Now a section of fence, +Z, if there's a post there
p2 = p;
p2.Z++;
n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
f2 = &nodedef->get(n2);
if(f2->drawtype == NDT_FENCELIKE)
{
aabb3f bar(-bar_rad,-bar_rad+BS/4,-bar_len+BS/2,
bar_rad,bar_rad+BS/4,bar_len+BS/2);
bar.MinEdge += pos;
bar.MaxEdge += pos;
f32 zrailuv[24]={
2012-03-29 22:59:43 +03:00
3/16.,1/16.,5/16.,5/16., // cannot rotate; stretch
4/16.,1/16.,6/16.,5/16., // for wood texture instead
0/16.,9/16.,16/16.,11/16.,
0/16.,6/16.,16/16.,8/16.,
6/16.,6/16.,8/16.,8/16.,
10/16.,10/16.,12/16.,12/16.};
makeCuboid(&collector, bar, &tile_nocrack, 1,
c, zrailuv, f.light_source);
bar.MinEdge.Y -= BS/2;
bar.MaxEdge.Y -= BS/2;
makeCuboid(&collector, bar, &tile_nocrack, 1,
c, zrailuv, f.light_source);
2011-07-23 02:04:24 +03:00
}
break;}
case NDT_RAILLIKE:
{
bool is_rail_x[6]; /* (-1,-1,0) X (1,-1,0) (-1,0,0) X (1,0,0) (-1,1,0) X (1,1,0) */
bool is_rail_z[6];
content_t thiscontent = n.getContent();
std::string groupname = "connect_to_raillike"; // name of the group that enables connecting to raillike nodes of different kind
int self_group = ((ItemGroupList) nodedef->get(n).groups)[groupname];
u8 index = 0;
for (s8 y0 = -1; y0 <= 1; y0++) {
// Prevent from indexing never used coordinates
for (s8 xz = -1; xz <= 1; xz++) {
if (xz == 0)
continue;
MapNode n_xy = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(x + xz, y + y0, z));
MapNode n_zy = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(x, y + y0, z + xz));
const ContentFeatures &def_xy = nodedef->get(n_xy);
const ContentFeatures &def_zy = nodedef->get(n_zy);
// Check if current node would connect with the rail
is_rail_x[index] = ((def_xy.drawtype == NDT_RAILLIKE
&& ((ItemGroupList) def_xy.groups)[groupname] == self_group)
|| n_xy.getContent() == thiscontent);
is_rail_z[index] = ((def_zy.drawtype == NDT_RAILLIKE
&& ((ItemGroupList) def_zy.groups)[groupname] == self_group)
|| n_zy.getContent() == thiscontent);
index++;
}
}
bool is_rail_x_all[2]; // [0] = negative x, [1] = positive x coordinate from the current node position
bool is_rail_z_all[2];
is_rail_x_all[0] = is_rail_x[0] || is_rail_x[2] || is_rail_x[4];
is_rail_x_all[1] = is_rail_x[1] || is_rail_x[3] || is_rail_x[5];
is_rail_z_all[0] = is_rail_z[0] || is_rail_z[2] || is_rail_z[4];
is_rail_z_all[1] = is_rail_z[1] || is_rail_z[3] || is_rail_z[5];
2012-03-03 19:16:48 +01:00
// reasonable default, flat straight unrotated rail
bool is_straight = true;
int adjacencies = 0;
int angle = 0;
u8 tileindex = 0;
// check for sloped rail
if (is_rail_x[4] || is_rail_x[5] || is_rail_z[4] || is_rail_z[5]) {
adjacencies = 5; // 5 means sloped
is_straight = true; // sloped is always straight
} else {
// is really straight, rails on both sides
is_straight = (is_rail_x_all[0] && is_rail_x_all[1]) || (is_rail_z_all[0] && is_rail_z_all[1]);
adjacencies = is_rail_x_all[0] + is_rail_x_all[1] + is_rail_z_all[0] + is_rail_z_all[1];
}
switch (adjacencies) {
case 1:
if (is_rail_x_all[0] || is_rail_x_all[1])
angle = 90;
break;
case 2:
if (!is_straight)
tileindex = 1; // curved
if (is_rail_x_all[0] && is_rail_x_all[1])
angle = 90;
if (is_rail_z_all[0] && is_rail_z_all[1]) {
if (is_rail_z[4])
angle = 180;
}
else if (is_rail_x_all[0] && is_rail_z_all[0])
angle = 270;
else if (is_rail_x_all[0] && is_rail_z_all[1])
angle = 180;
else if (is_rail_x_all[1] && is_rail_z_all[1])
angle = 90;
break;
case 3:
// here is where the potential to 'switch' a junction is, but not implemented at present
tileindex = 2; // t-junction
if(!is_rail_x_all[1])
angle = 180;
if(!is_rail_z_all[0])
angle = 90;
if(!is_rail_z_all[1])
angle = 270;
break;
case 4:
tileindex = 3; // crossing
break;
case 5: //sloped
if (is_rail_z[4])
angle = 180;
if (is_rail_x[4])
angle = 90;
if (is_rail_x[5])
angle = -90;
break;
default:
2012-06-05 21:51:01 +03:00
break;
}
TileSpec tile = getNodeTileN(n, p, tileindex, data);
tile.material_flags &= ~MATERIAL_FLAG_BACKFACE_CULLING;
tile.material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
u16 l = getInteriorLight(n, 0, nodedef);
video::SColor c = encode_light_and_color(l, tile.color,
f.light_source);
2012-03-03 19:16:48 +01:00
float d = (float)BS/64;
float s = BS/2;
short g = -1;
if (is_rail_x[4] || is_rail_x[5] || is_rail_z[4] || is_rail_z[5])
g = 1; //Object is at a slope
2012-03-03 19:16:48 +01:00
video::S3DVertex vertices[4] =
{
video::S3DVertex(-s, -s+d, -s, 0, 0, 0, c, 0, 1),
video::S3DVertex( s, -s+d, -s, 0, 0, 0, c, 1, 1),
video::S3DVertex( s, g*s+d, s, 0, 0, 0, c, 1, 0),
video::S3DVertex(-s, g*s+d, s, 0, 0, 0, c, 0, 0),
};
for(s32 i=0; i<4; i++)
{
if(angle != 0)
vertices[i].Pos.rotateXZBy(angle);
vertices[i].Pos += intToFloat(p, BS);
}
u16 indices[] = {0,1,2,2,3,0};
collector.append(tile, vertices, 4, indices, 6);
break;}
case NDT_NODEBOX:
{
static const v3s16 tile_dirs[6] = {
v3s16(0, 1, 0),
v3s16(0, -1, 0),
v3s16(1, 0, 0),
v3s16(-1, 0, 0),
v3s16(0, 0, 1),
v3s16(0, 0, -1)
};
u16 l = getInteriorLight(n, 1, nodedef);
TileSpec tiles[6];
video::SColor colors[6];
for(int j = 0; j < 6; j++) {
// Handles facedir rotation for textures
tiles[j] = getNodeTile(n, p, tile_dirs[j], data);
colors[j]= encode_light_and_color(l, tiles[j].color,
f.light_source);
}
v3f pos = intToFloat(p, BS);
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 00:16:31 -08:00
int neighbors = 0;
// locate possible neighboring nodes to connect to
if (f.node_box.type == NODEBOX_CONNECTED) {
v3s16 p2 = p;
p2.Y++;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 1, &neighbors);
p2 = p;
p2.Y--;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 2, &neighbors);
p2 = p;
p2.Z--;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 4, &neighbors);
p2 = p;
p2.X--;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 8, &neighbors);
p2 = p;
p2.Z++;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 16, &neighbors);
p2 = p;
p2.X++;
getNeighborConnectingFace(blockpos_nodes + p2, nodedef, data, n, 32, &neighbors);
}
std::vector<aabb3f> boxes;
n.getNodeBoxes(nodedef, &boxes, neighbors);
for(std::vector<aabb3f>::iterator
i = boxes.begin();
2015-08-25 21:23:05 +01:00
i != boxes.end(); ++i)
{
aabb3f box = *i;
box.MinEdge += pos;
box.MaxEdge += pos;
2013-03-23 19:17:00 +01:00
f32 temp;
if (box.MinEdge.X > box.MaxEdge.X)
{
temp=box.MinEdge.X;
box.MinEdge.X=box.MaxEdge.X;
box.MaxEdge.X=temp;
}
if (box.MinEdge.Y > box.MaxEdge.Y)
{
temp=box.MinEdge.Y;
box.MinEdge.Y=box.MaxEdge.Y;
box.MaxEdge.Y=temp;
}
if (box.MinEdge.Z > box.MaxEdge.Z)
{
temp=box.MinEdge.Z;
box.MinEdge.Z=box.MaxEdge.Z;
box.MaxEdge.Z=temp;
}
2013-03-23 19:17:00 +01:00
//
// Compute texture coords
2013-03-23 19:17:00 +01:00
f32 tx1 = (box.MinEdge.X/BS)+0.5;
f32 ty1 = (box.MinEdge.Y/BS)+0.5;
f32 tz1 = (box.MinEdge.Z/BS)+0.5;
f32 tx2 = (box.MaxEdge.X/BS)+0.5;
f32 ty2 = (box.MaxEdge.Y/BS)+0.5;
f32 tz2 = (box.MaxEdge.Z/BS)+0.5;
f32 txc[24] = {
// up
tx1, 1-tz2, tx2, 1-tz1,
// down
tx1, tz1, tx2, tz2,
// right
tz1, 1-ty2, tz2, 1-ty1,
// left
1-tz2, 1-ty2, 1-tz1, 1-ty1,
// back
1-tx2, 1-ty2, 1-tx1, 1-ty1,
// front
tx1, 1-ty2, tx2, 1-ty1,
};
makeCuboid(&collector, box, tiles, 6, colors, txc, f.light_source);
}
break;}
2014-10-15 04:13:53 +02:00
case NDT_MESH:
{
v3f pos = intToFloat(p, BS);
u16 l = getInteriorLight(n, 1, nodedef);
u8 facedir = 0;
if (f.param_type_2 == CPT2_FACEDIR ||
f.param_type_2 == CPT2_COLORED_FACEDIR) {
facedir = n.getFaceDir(nodedef);
} else if (f.param_type_2 == CPT2_WALLMOUNTED ||
f.param_type_2 == CPT2_COLORED_WALLMOUNTED) {
//convert wallmounted to 6dfacedir.
//when cache enabled, it is already converted
2014-11-19 16:17:54 -05:00
facedir = n.getWallMounted(nodedef);
if (!enable_mesh_cache) {
2014-11-19 16:17:54 -05:00
static const u8 wm_to_6d[6] = {20, 0, 16+1, 12+3, 8, 4+2};
facedir = wm_to_6d[facedir];
}
}
if (f.mesh_ptr[facedir]) {
// use cached meshes
for(u16 j = 0; j < f.mesh_ptr[0]->getMeshBufferCount(); j++) {
const TileSpec &tile = getNodeTileN(n, p, j, data);
scene::IMeshBuffer *buf = f.mesh_ptr[facedir]->getMeshBuffer(j);
collector.append(tile, (video::S3DVertex *)
buf->getVertices(), buf->getVertexCount(),
buf->getIndices(), buf->getIndexCount(), pos,
encode_light_and_color(l, tile.color, f.light_source),
f.light_source);
}
} else if (f.mesh_ptr[0]) {
// no cache, clone and rotate mesh
scene::IMesh* mesh = cloneMesh(f.mesh_ptr[0]);
rotateMeshBy6dFacedir(mesh, facedir);
recalculateBoundingBox(mesh);
meshmanip->recalculateNormals(mesh, true, false);
for(u16 j = 0; j < mesh->getMeshBufferCount(); j++) {
const TileSpec &tile = getNodeTileN(n, p, j, data);
scene::IMeshBuffer *buf = mesh->getMeshBuffer(j);
collector.append(tile, (video::S3DVertex *)
buf->getVertices(), buf->getVertexCount(),
buf->getIndices(), buf->getIndexCount(), pos,
encode_light_and_color(l, tile.color, f.light_source),
f.light_source);
}
mesh->drop();
2014-10-15 04:13:53 +02:00
}
break;}
}
}
}