676 lines
16 KiB
C++
676 lines
16 KiB
C++
/*
|
|
* Minetest
|
|
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
* permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "noise.h"
|
|
#include <iostream>
|
|
#include <string.h> // memset
|
|
#include "debug.h"
|
|
#include "util/numeric.h"
|
|
#include "exceptions.h"
|
|
|
|
#define NOISE_MAGIC_X 1619
|
|
#define NOISE_MAGIC_Y 31337
|
|
#define NOISE_MAGIC_Z 52591
|
|
#define NOISE_MAGIC_SEED 1013
|
|
|
|
typedef float (*Interp3dFxn)(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z);
|
|
|
|
float cos_lookup[16] = {
|
|
1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238,
|
|
1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238
|
|
};
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
//noise poly: p(n) = 60493n^3 + 19990303n + 137612589
|
|
float noise2d(int x, int y, int seed)
|
|
{
|
|
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)n / 0x40000000;
|
|
}
|
|
|
|
|
|
float noise3d(int x, int y, int z, int seed)
|
|
{
|
|
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)n / 0x40000000;
|
|
}
|
|
|
|
|
|
float dotProduct(float vx, float vy, float wx, float wy)
|
|
{
|
|
return vx * wx + vy * wy;
|
|
}
|
|
|
|
|
|
inline float linearInterpolation(float v0, float v1, float t)
|
|
{
|
|
return v0 + (v1 - v0) * t;
|
|
}
|
|
|
|
|
|
float biLinearInterpolation(
|
|
float v00, float v10,
|
|
float v01, float v11,
|
|
float x, float y)
|
|
{
|
|
float tx = easeCurve(x);
|
|
float ty = easeCurve(y);
|
|
float u = linearInterpolation(v00, v10, tx);
|
|
float v = linearInterpolation(v01, v11, tx);
|
|
return linearInterpolation(u, v, ty);
|
|
}
|
|
|
|
|
|
float biLinearInterpolationNoEase(
|
|
float x0y0, float x1y0,
|
|
float x0y1, float x1y1,
|
|
float x, float y)
|
|
{
|
|
float u = linearInterpolation(x0y0, x1y0, x);
|
|
float v = linearInterpolation(x0y1, x1y1, x);
|
|
return linearInterpolation(u, v, y);
|
|
}
|
|
|
|
/*
|
|
float triLinearInterpolation(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float u = biLinearInterpolation(v000, v100, v010, v110, x, y);
|
|
float v = biLinearInterpolation(v001, v101, v011, v111, x, y);
|
|
return linearInterpolation(u, v, z);
|
|
}
|
|
|
|
|
|
float triLinearInterpolationNoEase(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
|
|
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
|
|
return linearInterpolation(u, v, z);
|
|
}
|
|
*/
|
|
|
|
|
|
float triLinearInterpolation(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float tx = easeCurve(x);
|
|
float ty = easeCurve(y);
|
|
float tz = easeCurve(z);
|
|
|
|
return (
|
|
v000 * (1 - tx) * (1 - ty) * (1 - tz) +
|
|
v100 * tx * (1 - ty) * (1 - tz) +
|
|
v010 * (1 - tx) * ty * (1 - tz) +
|
|
v110 * tx * ty * (1 - tz) +
|
|
v001 * (1 - tx) * (1 - ty) * tz +
|
|
v101 * tx * (1 - ty) * tz +
|
|
v011 * (1 - tx) * ty * tz +
|
|
v111 * tx * ty * tz
|
|
);
|
|
}
|
|
|
|
float triLinearInterpolationNoEase(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z)
|
|
{
|
|
float tx = x;
|
|
float ty = y;
|
|
float tz = z;
|
|
return (
|
|
v000 * (1 - tx) * (1 - ty) * (1 - tz) +
|
|
v100 * tx * (1 - ty) * (1 - tz) +
|
|
v010 * (1 - tx) * ty * (1 - tz) +
|
|
v110 * tx * ty * (1 - tz) +
|
|
v001 * (1 - tx) * (1 - ty) * tz +
|
|
v101 * tx * (1 - ty) * tz +
|
|
v011 * (1 - tx) * ty * tz +
|
|
v111 * tx * ty * tz
|
|
);
|
|
}
|
|
|
|
|
|
#if 0
|
|
float noise2d_gradient(float x, float y, int seed)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
|
|
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
// Calculate random cosine lookup table indices for the integer corners.
|
|
// They are looked up as unit vector gradients from the lookup table.
|
|
int n00 = (int)((noise2d(x0, y0, seed)+1)*8);
|
|
int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8);
|
|
int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8);
|
|
int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8);
|
|
// Make a dot product for the gradients and the positions, to get the values
|
|
float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
|
|
float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
|
|
float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
|
|
float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
|
|
// Interpolate between the values
|
|
return biLinearInterpolation(s,u,v,w,xl,yl);
|
|
}
|
|
#endif
|
|
|
|
|
|
float noise2d_gradient(float x, float y, int seed)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
// Get values for corners of square
|
|
float v00 = noise2d(x0, y0, seed);
|
|
float v10 = noise2d(x0+1, y0, seed);
|
|
float v01 = noise2d(x0, y0+1, seed);
|
|
float v11 = noise2d(x0+1, y0+1, seed);
|
|
// Interpolate
|
|
return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
|
|
}
|
|
|
|
|
|
float noise3d_gradient(float x, float y, float z, int seed, bool eased)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
int z0 = myfloor(z);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
float zl = z - (float)z0;
|
|
// Get values for corners of cube
|
|
float v000 = noise3d(x0, y0, z0, seed);
|
|
float v100 = noise3d(x0 + 1, y0, z0, seed);
|
|
float v010 = noise3d(x0, y0 + 1, z0, seed);
|
|
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
|
|
float v001 = noise3d(x0, y0, z0 + 1, seed);
|
|
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
|
|
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
|
|
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
|
|
// Interpolate
|
|
if (eased) {
|
|
return triLinearInterpolation(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
xl, yl, zl);
|
|
} else {
|
|
return triLinearInterpolationNoEase(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
xl, yl, zl);
|
|
}
|
|
}
|
|
|
|
|
|
float noise2d_perlin(float x, float y, int seed,
|
|
int octaves, float persistence)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * noise2d_gradient(x * f, y * f, seed + i);
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise2d_perlin_abs(float x, float y, int seed,
|
|
int octaves, float persistence)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * fabs(noise2d_gradient(x * f, y * f, seed + i));
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise3d_perlin(float x, float y, float z, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float noise3d_perlin_abs(float x, float y, float z, int seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float contour(float v)
|
|
{
|
|
v = fabs(v);
|
|
if(v >= 1.0)
|
|
return 0.0;
|
|
return (1.0 - v);
|
|
}
|
|
|
|
|
|
///////////////////////// [ New perlin stuff ] ////////////////////////////
|
|
|
|
|
|
Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz)
|
|
{
|
|
this->np = np;
|
|
this->seed = seed;
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
this->noisebuf = NULL;
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
try {
|
|
this->buf = new float[sx * sy * sz];
|
|
this->result = new float[sx * sy * sz];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
Noise::~Noise()
|
|
{
|
|
delete[] buf;
|
|
delete[] result;
|
|
delete[] noisebuf;
|
|
}
|
|
|
|
|
|
void Noise::setSize(int sx, int sy, int sz)
|
|
{
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
this->noisebuf = NULL;
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
delete[] buf;
|
|
delete[] result;
|
|
try {
|
|
this->buf = new float[sx * sy * sz];
|
|
this->result = new float[sx * sy * sz];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
void Noise::setSpreadFactor(v3f spread)
|
|
{
|
|
this->np->spread = spread;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::setOctaves(int octaves)
|
|
{
|
|
this->np->octaves = octaves;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::resizeNoiseBuf(bool is3d)
|
|
{
|
|
int nlx, nly, nlz;
|
|
float ofactor;
|
|
|
|
//maximum possible spread value factor
|
|
ofactor = (float)(1 << (np->octaves - 1));
|
|
|
|
//noise lattice point count
|
|
//(int)(sz * spread * ofactor) is # of lattice points crossed due to length
|
|
// + 2 for the two initial endpoints
|
|
// + 1 for potentially crossing a boundary due to offset
|
|
nlx = (int)(sx * ofactor / np->spread.X) + 3;
|
|
nly = (int)(sy * ofactor / np->spread.Y) + 3;
|
|
nlz = is3d ? (int)(sz * ofactor / np->spread.Z) + 3 : 1;
|
|
|
|
if (noisebuf)
|
|
delete[] noisebuf;
|
|
try {
|
|
noisebuf = new float[nlx * nly * nlz];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* NB: This algorithm is not optimal in terms of space complexity. The entire
|
|
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
|
|
* 2 lines + 2 planes.
|
|
* However, this would require the noise calls to be interposed with the
|
|
* interpolation loops, which may trash the icache, leading to lower overall
|
|
* performance.
|
|
* Another optimization that could save half as many noise calls is to carry over
|
|
* values from the previous noise lattice as midpoints in the new lattice for the
|
|
* next octave.
|
|
*/
|
|
#define idx(x, y) ((y) * nlx + (x))
|
|
void Noise::gradientMap2D(
|
|
float x, float y,
|
|
float step_x, float step_y,
|
|
int seed)
|
|
{
|
|
float v00, v01, v10, v11, u, v, orig_u;
|
|
int index, i, j, x0, y0, noisex, noisey;
|
|
int nlx, nly;
|
|
|
|
x0 = floor(x);
|
|
y0 = floor(y);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
orig_u = u;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (int)(u + sx * step_x) + 2;
|
|
nly = (int)(v + sy * step_y) + 2;
|
|
index = 0;
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noisebuf[index++] = noise2d(x0 + i, y0 + j, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v00 = noisebuf[idx(0, noisey)];
|
|
v10 = noisebuf[idx(1, noisey)];
|
|
v01 = noisebuf[idx(0, noisey + 1)];
|
|
v11 = noisebuf[idx(1, noisey + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
buf[index++] = biLinearInterpolation(v00, v10, v01, v11, u, v);
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v00 = v10;
|
|
v01 = v11;
|
|
v10 = noisebuf[idx(noisex + 1, noisey)];
|
|
v11 = noisebuf[idx(noisex + 1, noisey + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
|
|
void Noise::gradientMap3D(
|
|
float x, float y, float z,
|
|
float step_x, float step_y, float step_z,
|
|
int seed, bool eased)
|
|
{
|
|
float v000, v010, v100, v110;
|
|
float v001, v011, v101, v111;
|
|
float u, v, w, orig_u, orig_v;
|
|
int index, i, j, k, x0, y0, z0, noisex, noisey, noisez;
|
|
int nlx, nly, nlz;
|
|
|
|
Interp3dFxn interpolate = eased ?
|
|
triLinearInterpolation : triLinearInterpolationNoEase;
|
|
|
|
x0 = floor(x);
|
|
y0 = floor(y);
|
|
z0 = floor(z);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
w = z - (float)z0;
|
|
orig_u = u;
|
|
orig_v = v;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (int)(u + sx * step_x) + 2;
|
|
nly = (int)(v + sy * step_y) + 2;
|
|
nlz = (int)(w + sz * step_z) + 2;
|
|
index = 0;
|
|
for (k = 0; k != nlz; k++)
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noisebuf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
noisez = 0;
|
|
for (k = 0; k != sz; k++) {
|
|
v = orig_v;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v000 = noisebuf[idx(0, noisey, noisez)];
|
|
v100 = noisebuf[idx(1, noisey, noisez)];
|
|
v010 = noisebuf[idx(0, noisey + 1, noisez)];
|
|
v110 = noisebuf[idx(1, noisey + 1, noisez)];
|
|
v001 = noisebuf[idx(0, noisey, noisez + 1)];
|
|
v101 = noisebuf[idx(1, noisey, noisez + 1)];
|
|
v011 = noisebuf[idx(0, noisey + 1, noisez + 1)];
|
|
v111 = noisebuf[idx(1, noisey + 1, noisez + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
buf[index++] = interpolate(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
u, v, w);
|
|
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v000 = v100;
|
|
v010 = v110;
|
|
v100 = noisebuf[idx(noisex + 1, noisey, noisez)];
|
|
v110 = noisebuf[idx(noisex + 1, noisey + 1, noisez)];
|
|
v001 = v101;
|
|
v011 = v111;
|
|
v101 = noisebuf[idx(noisex + 1, noisey, noisez + 1)];
|
|
v111 = noisebuf[idx(noisex + 1, noisey + 1, noisez + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
|
|
w += step_z;
|
|
if (w >= 1.0) {
|
|
w -= 1.0;
|
|
noisez++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
float *Noise::perlinMap2D(float x, float y)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
for (int oct = 0; oct < np->octaves; oct++) {
|
|
gradientMap2D(x * f, y * f,
|
|
f / np->spread.X, f / np->spread.Y,
|
|
seed + np->seed + oct);
|
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * buf[i];
|
|
|
|
f *= 2.0;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
float *Noise::perlinMap2DModulated(float x, float y, float *persist_map)
|
|
{
|
|
float f = 1.0;
|
|
size_t bufsize = sx * sy;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
float *g = new float[bufsize];
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
g[i] = 1.0;
|
|
|
|
for (int oct = 0; oct < np->octaves; oct++) {
|
|
gradientMap2D(x * f, y * f,
|
|
f / np->spread.X, f / np->spread.Y,
|
|
seed + np->seed + oct);
|
|
|
|
for (size_t i = 0; i != bufsize; i++) {
|
|
result[i] += g[i] * buf[i];
|
|
g[i] *= persist_map[i];
|
|
}
|
|
|
|
f *= 2.0;
|
|
}
|
|
|
|
delete[] g;
|
|
return result;
|
|
}
|
|
|
|
|
|
float *Noise::perlinMap3D(float x, float y, float z, bool eased)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy * sz;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
z /= np->spread.Z;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
for (int oct = 0; oct < np->octaves; oct++) {
|
|
gradientMap3D(x * f, y * f, z * f,
|
|
f / np->spread.X, f / np->spread.Y, f / np->spread.Z,
|
|
seed + np->seed + oct, eased);
|
|
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * buf[i];
|
|
|
|
f *= 2.0;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void Noise::transformNoiseMap()
|
|
{
|
|
size_t i = 0;
|
|
|
|
for (int z = 0; z != sz; z++)
|
|
for (int y = 0; y != sy; y++)
|
|
for (int x = 0; x != sx; x++) {
|
|
result[i] = result[i] * np->scale + np->offset;
|
|
i++;
|
|
}
|
|
}
|
|
|