leef-math-cd2025/modules/intersect.lua
2015-12-28 12:15:19 -04:00

296 lines
7.0 KiB
Lua

--- Various geometric intersections
-- @module intersect
local current_folder = (...):gsub('%.[^%.]+$', '') .. "."
local vec3 = require(current_folder .. "vec3")
local constants = require(current_folder .. "constants")
local intersect = {}
local abs, min, max = math.abs, math.min, math.max
local FLT_EPSILON = constants.FLT_EPSILON
-- ray.position is a vec3
-- ray.direction is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.ray_aabb(ray, aabb)
-- ray.direction is unit direction vector of ray
local dir = vec3()
vec3.normalize(dir, ray.direction)
local dirfrac = vec3(1 / dir.x, 1 / dir.y, 1 / dir.z)
local t1 = (aabb.min.x - ray.position.x) * dirfrac.x
local t2 = (aabb.max.x - ray.position.x) * dirfrac.x
local t3 = (aabb.min.y - ray.position.y) * dirfrac.y
local t4 = (aabb.max.y - ray.position.y) * dirfrac.y
local t5 = (aabb.min.z - ray.position.z) * dirfrac.z
local t6 = (aabb.max.z - ray.position.z) * dirfrac.z
local tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6))
local tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6))
-- ray is intersecting AABB, but whole AABB is behind us
if tmax < 0 then
return false
end
-- ray does not intersect AABB
if tmin > tmax then
return false
end
-- return position of intersection
return tmin
end
-- ray.position is a vec3
-- ray.direction is a vec3
-- plane.position is a vec3
-- plane.normal is a vec3
-- https://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm
function intersect.ray_plane(ray, plane)
local d = vec3.dist(ray.position, plane.position)
local r = vec3.dot(ray.direction, plane.normal)
-- ray does not intersect plane
if r <= 0 then
return false
end
-- distance of direction
local t = -(vec3.dot(ray.position, plane.normal) + d) / r
local out = vec3()
vec3.mul(out, ray.direction, t)
vec3.add(out, ray.position, out)
-- return position of intersection
if vec3.dot(out, plane.normal) + d < FLT_EPSILON then
return out
end
-- ray does not intersect plane
return false
end
-- ray.position is a vec3
-- ray.direction is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
-- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
local h, s, q, e1, e2 = vec3(), vec3(), vec3(), vec3(), vec3()
function intersect.ray_triangle(ray, triangle)
local a, f, u, v
vec3.sub(e1, triangle[2], triangle[1])
vec3.sub(e2, triangle[3], triangle[1])
vec3.cross(h, ray.direction, e2)
a = vec3.dot(h, e1)
-- if a is too close to 0, ray does not intersect triangle
if abs(a) <= FLT_EPSILON then
return false
end
f = 1 / a
vec3.sub(s, ray.position, triangle[1])
u = vec3.dot(s, h) * f
-- ray does not intersect triangle
if u < 0 or u > 1 then
return false
end
vec3.cross(q, s, e1)
v = vec3.dot(ray.direction, q) * f
-- ray does not intersect triangle
if v < 0 or u + v > 1 then
return false
end
-- at this stage we can compute t to find out where
-- the intersection point is on the line
local t = vec3.dot(q, e2) * f
-- return position of intersection
if t >= FLT_EPSILON then
local out = vec3()
vec3.mul(out, ray.direction, t)
vec3.add(out, ray.position, out)
return out
end
-- ray does not intersect triangle
return false
end
-- ray.position is a vec3
-- ray.direction is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
-- http://graphicscodex.com/Sample2-RayTriangleIntersection.pdf
local q, r, s = vec3(), vec3(), vec3()
local n, u, v = vec3(), vec3(), vec3()
function intersect.ray_triangle2(ray, triangle)
local b1, b2, b3, a, t
-- Edge vectors
vec3.sub(u, triangle[2], triangle[1])
vec3.sub(v, triangle[3], triangle[1])
-- Face normal
vec3.cross(n, u, v)
vec3.cross(q, ray.direction, v)
a = vec3.dot(q, u)
-- Backfacing or nearly parallel?
if vec3.dot(n, ray.direction) >= FLT_EPSILON or
abs(a) < FLT_EPSILON then
return false
end
vec3.sub(s, ray.position, triangle[1])
vec3.div(s, s, a)
vec3.cross(r, s, u)
b1 = vec3.dot(s, q))
b2 = vec3.dot(r, ray.direction))
b3 = 1 - b[1] - b[2])
-- Intersected outside triangle?
if b1 < FLT_EPSILON or
b2 < FLT_EPSILON or
b3 < FLT_EPSILON then
return false
end
t = vec3.dot(r, v)
if t >= FLT_EPSILON then
local out = vec3()
vec3.mul(out, ray.direction, t)
vec3.add(out, ray.position, out)
return out
end
return false
end
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
-- Algorithm is ported from the C algorithm of
-- Paul Bourke at http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/
-- Archive.org am hero \o/
function intersect.line_line(a, b)
-- new points
local p13, p43, p21 = vec3(), vec3(), vec3()
vec3.sub(p13, a[1], b[1])
vec3.sub(p43, b[2], b[1])
vec3.sub(p21, a[2], a[1])
-- if lengths are negative or too close to 0, lines do not intersect
if vec3.len2(p43) < FLT_EPSILON or vec3.len2(p21) < FLT_EPSILON then
return false
end
-- dot products
local d1343 = vec3.dot(p13, p43)
local d4321 = vec3.dot(p43, p21)
local d1321 = vec3.dot(p13, p21)
local d4343 = vec3.dot(p43, p43)
local d2121 = vec3.dot(p21, p21)
local denom = d2121 * d4343 - d4321 * d4321
-- if denom is too close to 0, lines do not intersect
if abs(denom) < FLT_EPSILON then
return false
end
local numer = d1343 * d4321 - d1321 * d4343
local mua = numer / denom
local mub = (d1343 + d4321 * (mua)) / d4343
-- return positions of intersection on each line
local out1 = vec3()
vec3.mul(out1, mua, p21)
vec3.add(out1, a[1], out)
local out2 = vec3()
vec3.mul(out2, mub, p43)
vec3.add(out2, b[1], out2)
return out1, out2
end
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
function intersect.segment_segment(a, b)
local c1, c2 = intersect.line_line(a, b)
-- return positions of line intersections if within segment ranges
if c1 and c2 then
if ((a[1] <= c1 and c1 <= a[2]) or (a[1] >= c1 and c1 >= a[2])) and
((b[1] <= c2 and c2 <= b[2]) or (b[1] >= c2 and c2 >= b[2])) then
return c1, c2
end
end
-- segments do not intersect
return false
end
-- point is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.point_aabb(point, aabb)
return
aabb.min.x <= point.x and
aabb.max.x >= point.x and
aabb.min.y <= point.y and
aabb.max.y >= point.y and
aabb.min.z <= point.z and
aabb.max.z >= point.z
end
-- a.min is a vec3
-- a.max is a vec3
-- b.min is a vec3
-- b.max is a vec3
function intersect.aabb_aabb(a, b)
return
a.min.x <= b.max.x and
a.max.x >= b.min.x and
a.min.y <= b.max.y and
a.max.y >= b.min.y and
a.min.z <= b.max.z and
a.max.z >= b.min.z
end
-- outer.min is a vec3
-- outer.max is a vec3
-- inner.min is a vec3
-- inner.max is a vec3
function intersect.encapsulate_aabb(outer, inner)
return
outer.min <= inner.min and
outer.max >= inner.max
end
-- a.position is a vec3
-- a.radius is a number
-- b.position is a vec3
-- b.radius is a number
function intersect.circle_circle(a, b)
return vec3.dist(a.position, b.position) <= a.radius + b.radius
end
return intersect