leef-math-cd2025/modules/intersect.lua
Landon Manning 0481a97195 Added ray casting to octree
* fixed octree API to match the rest of CPML
* standardized intersect inputs a bit more
2015-11-19 14:14:55 -04:00

211 lines
5.4 KiB
Lua

--- Various geometric intersections
-- @module intersect
local current_folder = (...):gsub('%.[^%.]+$', '') .. "."
local vec3 = require(current_folder .. "vec3")
local constants = require(current_folder .. "constants")
local intersect = {}
-- ray = { position, direction }
-- min = vec3
-- max = vec3
function intersect.ray_aabb(ray, min, max)
local mmin = math.min
local mmax = math.max
-- ray.direction is unit direction vector of ray
local dir = ray.direction:normalize()
local dirfrac = vec3(1 / dir.x, 1 / dir.y, 1 / dir.z)
local t1 = (min.x - ray.position.x) * dirfrac.x
local t2 = (max.x - ray.position.x) * dirfrac.x
local t3 = (min.y - ray.position.y) * dirfrac.y
local t4 = (max.y - ray.position.y) * dirfrac.y
local t5 = (min.z - ray.position.z) * dirfrac.z
local t6 = (max.z - ray.position.z) * dirfrac.z
local tmin = mmax(mmax(mmin(t1, t2), mmin(t3, t4)), mmin(t5, t6))
local tmax = mmin(mmin(mmax(t1, t2), mmax(t3, t4)), mmax(t5, t6))
-- if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behind us
if tmax < 0 then
return false
end
-- if tmin > tmax, ray doesn't intersect AABB
if tmin > tmax then
return false
end
return true, tmin
end
-- ray = { position, direction }
-- plane = { position, normal }
-- https://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm
function intersect.ray_plane(ray, plane)
-- t = distance of direction
-- d = distance from ray position to plane position
-- p = point of intersection
local d = ray.position:dist(plane.position)
local r = ray.direction:dot(plane.normal)
if r <= 0 then
return false
end
local t = -(ray.position:dot(plane.normal) + d) / r
local p = ray.position + t * ray.direction
if p:dot(plane.normal) + d < constants.FLT_EPSILON then
return p
end
return false
end
-- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
function intersect.ray_triangle(ray, triangle)
assert(ray.position ~= nil)
assert(ray.direction ~= nil)
assert(#triangle == 3)
local p, d = ray.position, ray.direction
local h, s, q = vec3(), vec3(), vec3()
local a, f, u, v
local e1 = triangle[2] - triangle[1]
local e2 = triangle[3] - triangle[1]
h = d:cross(e2)
a = (e1:dot(h))
if a > -0.00001 and a < 0.00001 then
return false
end
f = 1/a
s = p - triangle[1]
u = f * (s:dot(h))
if u < 0 or u > 1 then
return false
end
q = s:cross(e1)
v = f * (d:dot(q))
if v < 0 or u + v > 1 then
return false
end
-- at this stage we can compute t to find out where
-- the intersection point is on the line
t = f * (e2:dot(q))
if t > constants.FLT_EPSILON then
return p + t * d -- we've got a hit!
else
return false -- the line intersects, but it's behind the point
end
end
-- Algorithm is ported from the C algorithm of
-- Paul Bourke at http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/
-- Archive.org am hero \o/
function intersect.line_line(p1, p2, p3, p4)
local epsilon = constants.FLT_EPSILON
local resultSegmentPoint1 = vec3(0,0,0)
local resultSegmentPoint2 = vec3(0,0,0)
local p13 = p1 - p3
local p43 = p4 - p3
local p21 = p2 - p1
if p43:len2() < epsilon then return false end
if p21:len2() < epsilon then return false end
local d1343 = p13.x * p43.x + p13.y * p43.y + p13.z * p43.z
local d4321 = p43.x * p21.x + p43.y * p21.y + p43.z * p21.z
local d1321 = p13.x * p21.x + p13.y * p21.y + p13.z * p21.z
local d4343 = p43.x * p43.x + p43.y * p43.y + p43.z * p43.z
local d2121 = p21.x * p21.x + p21.y * p21.y + p21.z * p21.z
local denom = d2121 * d4343 - d4321 * d4321
if math.abs(denom) < epsilon then return false end
local numer = d1343 * d4321 - d1321 * d4343
local mua = numer / denom
local mub = (d1343 + d4321 * (mua)) / d4343
resultSegmentPoint1.x = p1.x + mua * p21.x
resultSegmentPoint1.y = p1.y + mua * p21.y
resultSegmentPoint1.z = p1.z + mua * p21.z
resultSegmentPoint2.x = p3.x + mub * p43.x
resultSegmentPoint2.y = p3.y + mub * p43.y
resultSegmentPoint2.z = p3.z + mub * p43.z
return resultSegmentPoint1, resultSegmentPoint2
end
function intersect.segment_segment(p1, p2, p3, p4)
local c1, c2 = intersect.line_line(p1, p2, p3, p4)
if c1 and c2 then
if ((p1 <= c1 and c1 <= p2) or (p1 >= c1 and c1 >= p2))
and ((p3 <= c2 and c2 <= p4) or (p3 >= c2 and c2 >= p4)) then
return c1, c2
end
end
end
-- point is a vec3
-- box.min is a vec3
-- box.max is a vec3
function intersect.point_aabb(point, box)
return
box.min.x <= point.x and
box.max.x >= point.x and
box.min.y <= point.y and
box.max.y >= point.y and
box.min.z <= point.z and
box.max.z >= point.z
end
-- a.min is a vec3
-- a.max is a vec3
-- b.min is a vec3
-- b.max is a vec3
function intersect.aabb_aabb(a, b)
return
a.min.x <= b.max.x and
b.min.x <= a.max.x and
a.min.y <= b.max.y and
b.min.y <= a.max.y and
a.min.z <= b.max.z and
b.min.z <= a.max.z
end
-- outer.min is a vec3
-- outer.max is a vec3
-- inner.min is a vec3
-- inner.max is a vec3
function intersect.encapsulate_aabb(outer, inner)
return
outer.min <= inner.min and
outer.max >= inner.max
end
function intersect.circle_circle(c1, c2)
assert(type(c1.position) == "table", "c1 position must be a vector")
assert(type(c1.radius) == "number", "c1 radius must be a number")
assert(type(c2.position) == "table", "c2 position must be a vector")
assert(type(c2.radius) == "number", "c2 radius must be a number")
return c1.position:dist(c2.position) <= c1.radius + c2.radius
end
return intersect