leef-math-cd2025/modules/intersect.lua
2016-07-26 00:44:15 -03:00

579 lines
14 KiB
Lua

--- Various geometric intersections
-- @module intersect
local modules = (...):gsub('%.[^%.]+$', '') .. "."
local constants = require(modules .. "constants")
local vec3 = require(modules .. "vec3")
local mat4 = require(modules .. "mat4")
local DBL_EPSILON = constants.DBL_EPSILON
local FLT_EPSILON = constants.FLT_EPSILON
local sqrt = math.sqrt
local abs = math.abs
local min = math.min
local max = math.max
local intersect = {}
-- Some temp variables
local h, s, q, e1, e2 = vec3(), vec3(), vec3(), vec3(), vec3()
local dir, dirfrac = vec3(), vec3()
local p13, p43, p21 = vec3(), vec3(), vec3()
local axes = { "x", "y", "z" }
-- https://blogs.msdn.microsoft.com/rezanour/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests/
-- point is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
function intersect.point_triangle(point, triangle)
local u = triangle[2] - triangle[1]
local v = triangle[3] - triangle[1]
local w = point - triangle[1]
local vw = vec3():cross(v, w)
local vu = vec3():cross(v, u)
if vw:dot(vu) < 0 then
return false
end
local uw = vec3():cross(u, w)
local uv = vec3():cross(u, v)
if uw:dot(uv) < 0 then
return false
end
local d = uv:len()
local r = vw:len() / d
local t = uw:len() / d
return r + t <= 1
end
-- point is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.point_aabb(point, aabb)
return
aabb.min.x <= point.x and
aabb.max.x >= point.x and
aabb.min.y <= point.y and
aabb.max.y >= point.y and
aabb.min.z <= point.z and
aabb.max.z >= point.z
end
-- point is a vec3
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.point_frustum(point, frustum)
local x, y, z = point:unpack()
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near,
frustum.far or false
}
-- Skip the last test for infinite projections, it'll never fail.
if not planes[6] then
table.remove(planes)
end
local dot
for i = 1, #planes do
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
if dot <= 0 then
return false
end
end
return true
end
-- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/
-- ray.position is a vec3
-- ray.direction is a vec3
-- triangle[1] is a vec3
-- triangle[2] is a vec3
-- triangle[3] is a vec3
function intersect.ray_triangle(ray, triangle)
e1:sub(triangle[2], triangle[1])
e2:sub(triangle[3], triangle[1])
h:cross(ray.direction, e2)
local a = h:dot(e1)
-- if a is too close to 0, ray does not intersect triangle
if abs(a) <= DBL_EPSILON then
return false
end
local f = 1 / a
s:sub(ray.position, triangle[1])
local u = s:dot(h) * f
-- ray does not intersect triangle
if u < 0 or u > 1 then
return false
end
q:cross(s, e1)
local v = ray.direction:dot(q) * f
-- ray does not intersect triangle
if v < 0 or u + v > 1 then
return false
end
-- at this stage we can compute t to find out where
-- the intersection point is on the line
local t = q:dot(e2) * f
-- return position of intersection
if t >= DBL_EPSILON then
local out = vec3()
out:mul(ray.direction, t)
out:add(ray.position, out)
return out
end
-- ray does not intersect triangle
return false
end
-- https://gamedev.stackexchange.com/questions/96459/fast-ray-sphere-collision-code
-- ray.position is a vec3
-- ray.direction is a vec3
-- sphere.position is a vec3
-- sphere.radius is a number
function intersect.ray_sphere(ray, sphere)
local offset = ray.position - sphere.position
local b = offset:dot(ray.direction)
local c = offset:dot(offset) - sphere.radius * sphere.radius
-- ray's position outside sphere (c > 0)
-- ray's direction pointing away from sphere (b > 0)
if c > 0 and b > 0 then
return false
end
local discr = b * b - c
-- negative discriminant
if discr < 0 then
return false
end
local t = -b - sqrt(discr)
-- Clamp t to 0
t = t < 0 and 0 or t
local out = vec3()
out:mul(ray.direction, t)
out:add(out, ray.position)
-- Return collision point and distance from ray origin
return out, t
end
-- http://gamedev.stackexchange.com/a/18459
-- ray.position is a vec3
-- ray.direction is a vec3
-- aabb.min is a vec3
-- aabb.max is a vec3
function intersect.ray_aabb(ray, aabb)
dir:normalize(ray.direction)
dirfrac.x = 1 / dir.x
dirfrac.y = 1 / dir.y
dirfrac.z = 1 / dir.z
local t1 = (aabb.min.x - ray.position.x) * dirfrac.x
local t2 = (aabb.max.x - ray.position.x) * dirfrac.x
local t3 = (aabb.min.y - ray.position.y) * dirfrac.y
local t4 = (aabb.max.y - ray.position.y) * dirfrac.y
local t5 = (aabb.min.z - ray.position.z) * dirfrac.z
local t6 = (aabb.max.z - ray.position.z) * dirfrac.z
local tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6))
local tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6))
-- ray is intersecting AABB, but whole AABB is behind us
if tmax < 0 then
return false
end
-- ray does not intersect AABB
if tmin > tmax then
return false
end
local out = vec3()
out:mul(ray.direction, tmin)
out:add(out, ray.position)
-- Return collision point and distance from ray origin
return out, tmin
end
-- https://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm
-- ray.position is a vec3
-- ray.direction is a vec3
-- plane.position is a vec3
-- plane.normal is a vec3
function intersect.ray_plane(ray, plane)
local r = ray.direction:dot(plane.normal)
-- ray does not intersect plane
if r >= 0 then
return false
end
-- distance of direction
local d = ray.position:dist(plane.position)
local t = -(ray.position:dot(plane.normal) + d) / r
local out = vec3()
out:mul(ray.direction, t)
out:add(out, ray.position)
-- Return collision point and distance from ray origin
if out:dot(plane.normal) + d < DBL_EPSILON then
return out, t
end
-- ray does not intersect plane
return false
end
-- https://web.archive.org/web/20120414063459/http://local.wasp.uwa.edu.au/~pbourke//geometry/lineline3d/
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
function intersect.line_line(a, b)
-- new points
p13:sub(a[1], b[1])
p43:sub(b[2], b[1])
p21:sub(a[2], a[1])
-- if lengths are negative or too close to 0, lines do not intersect
if p43:len2() < DBL_EPSILON or p21:len2() < DBL_EPSILON then
return false
end
-- dot products
local d1343 = p13:dot(p43)
local d4321 = p43:dot(p21)
local d1321 = p13:dot(p21)
local d4343 = p43:dot(p43)
local d2121 = p21:dot(p21)
local denom = d2121 * d4343 - d4321 * d4321
-- if denom is too close to 0, lines do not intersect
if abs(denom) < DBL_EPSILON then
return false
end
local numer = d1343 * d4321 - d1321 * d4343
local mua = numer / denom
local mub = (d1343 + d4321 * mua) / d4343
-- return positions of intersection on each line
local out1 = vec3()
out1:mul(p21, mua)
out1:add(out1, a[1])
local out2 = vec3()
out2:mul(p43, mub)
out2:add(out2, b[1])
return out1, out2
end
-- a[1] is a vec3
-- a[2] is a vec3
-- b[1] is a vec3
-- b[2] is a vec3
function intersect.segment_segment(a, b)
local c1, c2 = intersect.line_line(a, b)
-- return positions of line intersections if within segment ranges
if c1 and c2 then
if ((a[1] <= c1 and c1 <= a[2]) or (a[1] >= c1 and c1 >= a[2])) and
((b[1] <= c2 and c2 <= b[2]) or (b[1] >= c2 and c2 >= b[2])) then
return c1, c2
end
end
-- segments do not intersect
return false
end
-- a.min is a vec3
-- a.max is a vec3
-- b.min is a vec3
-- b.max is a vec3
function intersect.aabb_aabb(a, b)
return
a.min.x <= b.max.x and
a.max.x >= b.min.x and
a.min.y <= b.max.y and
a.max.y >= b.min.y and
a.min.z <= b.max.z and
a.max.z >= b.min.z
end
-- aabb.position is a vec3
-- aabb.extent is a vec3 (half-size)
-- obb.position is a vec3
-- obb.extent is a vec3 (half-size)
-- obb.rotation is a mat4
function intersect.aabb_obb(aabb, obb)
local a = aabb.extent
local b = obb.extent
local T = obb.position - aabb.position
local rot = mat4():transpose(obb.rotation)
local reps = 1e-6
local B = {}
for i = 1, 3 do
B[i] = {}
for j = 1, 3 do
assert((i - 1) * 4 + j < 16 and (i - 1) * 4 + j > 0)
B[i][j] = abs(rot[(i - 1) * 4 + j]) + reps
end
end
local t, s
local r = 1
t = abs(T.x)
if not (t <= (b.x + a.x * B[1][1] + b.y * B[1][2] + b.z * B[1][3])) then return false end
s = T.x * B[1][1] + T.y*B[2][1] + T.z*B[3][1]
t = abs(s)
if not (t <= (b.x + a.x * B[1][1] + a.y * B[2][1] + a.z * B[3][1])) then return false end
t = abs(T.y)
if not (t <= (a.y + b.x * B[2][1] + b.y * B[2][2] + b.z * B[2][3])) then return false end
t = abs(T.z)
if not (t <= (a.z + b.x * B[3][1] + b.y * B[3][2] + b.z * B[3][3])) then return false end
s = T.x * B[1][2] + T.y * B[2][2] + T.z * B[3][2]
t = abs(s)
if not (t <= (b.y + a.x * B[1][2] + a.y * B[2][2] + a.z * B[3][2])) then return false end
s = T.x * B[1][3] + T.y * B[2][3] + T.z * B[3][3]
t = abs(s)
if not (t <= (b.z + a.x * B[1][3] + a.y * B[2][3] + a.z * B[3][3])) then return false end
s = T.z * B[2][1] - T.y * B[3][1]
t = abs(s)
if not (t <= (a.y * B[3][1] + a.z * B[2][1] + b.y * B[1][3] + b.z * B[1][2])) then return false end
s = T.z * B[2][2] - T.y * B[3][2]
t = abs(s)
if not (t <= (a.y * B[3][2] + a.z * B[2][2] + b.x * B[1][3] + b.z * B[1][1])) then return false end
s = T.z * B[2][3] - T.y * B[3][3]
t = abs(s)
if not (t <= (a.y * B[3][3] + a.z * B[2][3] + b.x * B[1][2] + b.y * B[1][1])) then return false end
s = T.x * B[3][1] - T.z * B[1][1]
t = abs(s)
if not (t <= (a.x * B[3][1] + a.z * B[1][1] + b.y * B[2][3] + b.z * B[2][2])) then return false end
s = T.x * B[3][2] - T.z * B[1][2]
t = abs(s)
if not (t <= (a.x * B[3][2] + a.z * B[1][2] + b.x * B[2][3] + b.z * B[2][1])) then return false end
s = T.x * B[3][3] - T.z * B[1][3]
t = abs(s)
if not (t <= (a.x * B[3][3] + a.z * B[1][3] + b.x * B[2][2] + b.y * B[2][1])) then return false end
s = T.y * B[1][1] - T.x * B[2][1]
t = abs(s)
if not (t <= (a.x * B[2][1] + a.y * B[1][1] + b.y * B[3][3] + b.z * B[3][2])) then return false end
s = T.y * B[1][2] - T.x * B[2][2]
t = abs(s)
if not (t <= (a.x * B[2][2] + a.y * B[1][2] + b.x * B[3][3] + b.z * B[3][1])) then return false end
s = T.y * B[1][3] - T.x * B[2][3]
t = abs(s)
if not (t <= (a.x * B[2][3] + a.y * B[1][3] + b.x * B[3][2] + b.y * B[3][1])) then return false end
-- https://gamedev.stackexchange.com/questions/24078/which-side-was-hit
-- Minkowski Sum
local wy = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.y - obb.position.y)
local hx = (aabb.extent * 2 + obb.extent * 2) * (aabb.position.x - obb.position.x)
if wy > hx then
if wy > -hx then
return vec3(mat4.mul_mat4x1(obb.rotation, { 0, -1, 0, 1 }))
else
return vec3(mat4.mul_mat4x1(obb.rotation, { -1, 0, 0, 1 }))
end
else
if wy > -hx then
return vec3(mat4.mul_mat4x1(obb.rotation, { 1, 0, 0, 1 }))
else
return vec3(mat4.mul_mat4x1(obb.rotation, { 0, 1, 0, 1 }))
end
end
end
-- http://stackoverflow.com/a/4579069/1190664
-- aabb.min is a vec3
-- aabb.max is a vec3
-- sphere.position is a vec3
-- sphere.radius is a number
function intersect.aabb_sphere(aabb, sphere)
local dist2 = sphere.radius ^ 2
for _, axis in ipairs(axes) do
local pos = sphere.position[axis]
local amin = aabb.min[axis]
local amax = aabb.max[axis]
if pos < amin then
dist2 = dist2 - (pos - amin) ^ 2
elseif pos > amax then
dist2 = dist2 - (pos - amax) ^ 2
end
end
return dist2 > 0
end
-- aabb.min is a vec3
-- aabb.max is a vec3
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.aabb_frustum(aabb, frustum)
-- Indexed for the 'index trick' later
local box = {
aabb.min,
aabb.max
}
-- We have 6 planes defining the frustum, 5 if infinite.
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near,
frustum.far or false
}
-- Skip the last test for infinite projections, it'll never fail.
if not planes[6] then
table.remove(planes)
end
for i = 1, #planes do
-- This is the current plane
local p = planes[i]
-- p-vertex selection (with the index trick)
-- According to the plane normal we can know the
-- indices of the positive vertex
local px = p.a > 0.0 and 2 or 1
local py = p.b > 0.0 and 2 or 1
local pz = p.c > 0.0 and 2 or 1
-- project p-vertex on plane normal
-- (How far is p-vertex from the origin)
local dot = (p.a * box[px].x) + (p.b * box[py].y) + (p.c * box[pz].z)
-- Doesn't intersect if it is behind the plane
if dot < -p.d then
return false
end
end
return true
end
-- outer.min is a vec3
-- outer.max is a vec3
-- inner.min is a vec3
-- inner.max is a vec3
function intersect.encapsulate_aabb(outer, inner)
return
outer.min.x <= inner.min.x and
outer.max.x >= inner.max.x and
outer.min.y <= inner.min.y and
outer.max.y >= inner.max.y and
outer.min.z <= inner.min.z and
outer.max.z >= inner.max.z
end
-- a.position is a vec3
-- a.radius is a number
-- b.position is a vec3
-- b.radius is a number
function intersect.circle_circle(a, b)
return a.position:dist(b.position) <= a.radius + b.radius
end
-- a.position is a vec3
-- a.radius is a number
-- b.position is a vec3
-- b.radius is a number
function intersect.sphere_sphere(a, b)
return intersect.circle_circle(a, b)
end
-- sphere.position is a vec3
-- sphere.radius is a number
-- frustum.left is a plane { a, b, c, d }
-- frustum.right is a plane { a, b, c, d }
-- frustum.bottom is a plane { a, b, c, d }
-- frustum.top is a plane { a, b, c, d }
-- frustum.near is a plane { a, b, c, d }
-- frustum.far is a plane { a, b, c, d }
function intersect.sphere_frustum(sphere, frustum)
local x, y, z = sphere.position:unpack()
local planes = {
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near
}
if frustum.far then
table.insert(planes, frustum.far, 5)
end
local dot
for i = 1, #planes do
dot = planes[i].a * x + planes[i].b * y + planes[i].c * z + planes[i].d
if dot <= -sphere.radius then
return false
end
end
-- dot + radius is the distance of the object from the near plane.
-- make sure that the near plane is the last test!
return dot + radius
end
return intersect