karai17 46f8261ea0 Refactored mat4 (in progress)
Cleaned up vec2, vec3, quat
2016-07-18 06:17:42 -03:00

317 lines
7.9 KiB
Lua

--- A 3 component vector.
-- @module vec3
local sqrt = math.sqrt
local vec3 = {}
-- Private constructor.
local function new(x, y, z)
local v = {}
v.x, v.y, v.z = x, y, z
return setmetatable(v, vec3_mt)
end
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
local status, ffi
if type(jit) == "table" and jit.status() then
status, ffi = pcall(require, "ffi")
if status then
ffi.cdef "typedef struct { double x, y, z;} cpml_vec3;"
new = ffi.typeof("cpml_vec3")
end
end
-- Statically allocate a temporary variable used in some of our functions.
local tmp = new(0, 0, 0)
--- The public constructor.
-- @param x Can be of three types: </br>
-- number x component
-- table {x, y, z} or {x = x, y = y, z = z}
-- scalar to fill the vector eg. {x, x, x}
-- @tparam number y y component
-- @tparam number z z component
function vec3.new(x, y, z)
-- number, number, number
if x and y and z then
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
return new(x, y, z)
-- {x=x, y=y, z=z} or {x, y, z}
elseif type(x) == "table" then
local x, y, z = x.x or x[1], x.y or x[2], x.z or x[3]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
return new(x, y, z)
-- {x, x, x} eh. {0, 0, 0}, {3, 3, 3}
elseif type(x) == "number" then
return new(x, x, x)
else
return new(0, 0, 0)
end
end
--- Clone a vector.
-- @tparam vec3 a vector to be cloned
-- @treturn vec3
function vec3.clone(a)
return new(a.x, a.y, a.z)
end
--- Add two vectors.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
function vec3.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
out.z = a.z + b.z
return out
end
--- Subtract one vector from another.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
function vec3.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
out.z = a.z - b.z
return out
end
--- Multiply a vector by a scalar.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
function vec3.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
out.z = a.z * b
return out
end
--- Divide a vector by a scakar.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
function vec3.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
out.z = a.z / b
return out
end
--- Get the normal of a vector.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a vector to normalize
function vec3.normalize(out, a)
local l = vec3.len(a)
out.x = a.x / l
out.y = a.y / l
out.z = a.z / l
return out
end
--- Trim a vector to a given length
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a vector to be trimmed
-- @tparam number len the length to trim the vector to
function vec3.trim(out, a, len)
len = math.min(vec3.len(a), len)
vec3.normalize(out, a)
vec3.mul(out, out, len)
return out
end
--- Get the cross product of two vectors.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
function vec3.cross(out, a, b)
out.x = a.y * b.z - a.z * b.y
out.y = a.z * b.x - a.x * b.z
out.z = a.x * b.y - a.y * b.x
return out
end
--- Get the dot product of two vectors.
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
function vec3.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
--- Get the length of a vector.
-- @tparam vec3 a vector to get the length of
-- @treturn number
function vec3.len(a)
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z)
end
--- Get the squared length of a vector.
-- @tparam vec3 a vector to get the squared length of
-- @treturn number
function vec3.len2(a)
return a.x * a.x + a.y * a.y + a.z * a.z
end
--- Get the distance between two vectors.
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @treturn number
function vec3.dist(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
local dz = a.z - b.z
return sqrt(dx * dx + dy * dy + dz * dz)
end
--- Get the squared distance between two vectors.
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @treturn number
function vec3.dist2(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
local dz = a.z - b.z
return dx * dx + dy * dy + dz * dz
end
--- Lerp between two vectors.
-- @tparam vec3 out vector for result to be stored in
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @tparam number s step value
-- @treturn vec3
function vec3.lerp(out, a, b, s)
vec3.sub(out, b, a)
vec3.mul(out, out, s)
vec3.add(out, out, a)
return out
end
--- Unpack a vector into form x,y,z
-- @tparam vec3 a first vector
-- @treturn number x component
-- @treturn number y component
-- @treturn number z component
function vec3.unpack(a)
return a.x, a.y, a.z
end
--- Return a string formatted "{x, y, z}"
-- @tparam vec3 a the vector to be turned into a string
-- @treturn string
function vec3.tostring(a)
return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z)
end
--- Return a boolean showing if a table is or is not a vec3
-- @param v the object to be tested
-- @treturn boolean
function vec3.isvec3(v)
return
(
type(v) == "table" or
type(v) == "cdata"
) and
type(v.x) == "number" and
type(v.y) == "number" and
type(v.z) == "number"
end
function vec3.reflect(out, i, n)
vec3.mul(out, n, 2.0 * vec3.dot(n, i))
vec3.sub(out, i, out)
return out
end
function vec3.refract(out, i, n, ior)
local d = vec3.dot(n, i)
local k = 1.0 - ior * ior * (1.0 - d * d)
if k >= 0.0 then
vec3.mul(out, i, ior)
vec3.mul(tmp, n, ior * d + sqrt(k))
vec3.sub(out, out, tmp)
end
return out
end
local vec3_mt = {}
vec3_mt.__index = vec3
vec3_mt.__tostring = vec3.tostring
function vec3_mt.__call(self, x, y, z)
return vec3.new(x, y, z)
end
function vec3_mt.__tostring(a)
return vec3.tostring(a)
end
function vec3_mt.__unm(a)
return vec3.new(-a.x, -a.y, -a.z)
end
function vec3_mt.__eq(a,b)
assert(vec3.isvec3(a), "__eq: Wrong argument type for left hand operant. (<cpml.vec3> expected)")
assert(vec3.isvec3(b), "__eq: Wrong argument type for right hand operant. (<cpml.vec3> expected)")
return a.x == b.x and a.y == b.y and a.z == b.z
end
function vec3_mt.__add(a, b)
assert(vec3.isvec3(a), "__add: Wrong argument type for left hand operant. (<cpml.vec3> expected)")
assert(vec3.isvec3(b), "__add: Wrong argument type for right hand operant. (<cpml.vec3> expected)")
return vec3.add(new(), a, b)
end
function vec3_mt.__sub(a, b)
assert(vec3.isvec3(a), "__sub: Wrong argument type for left hand operant. (<cpml.vec3> expected)")
assert(vec3.isvec3(b), "__sub: Wrong argument type for right hand operant. (<cpml.vec3> expected)")
return vec3.sub(new(), a, b)
end
function vec3_mt.__mul(a, b)
local isvecb = vec3.isvec3(b)
a, b = isvecb and b or a, isvecb and a or b
assert(vec3.isvec3(a), "__mul: Wrong argument type for left hand operant. (<cpml.vec3> expected)")
assert(type(b) == "number", "__mul: Wrong argument type for right hand operant. (<number> expected)")
return vec3.mul(new(), a, b)
end
function vec3_mt.__div(a, b)
local isvecb = vec3.isvec3(b)
a, b = isvecb and b or a, isvecb and a or b
assert(vec3.isvec3(a), "__div: Wrong argument type for left hand operant. (<cpml.vec3> expected)")
assert(type(b) == "number", "__div: Wrong argument type for right hand operant. (<number> expected)")
return vec3.div(new(), a, b)
end
vec3.unit_x = new(1, 0, 0)
vec3.unit_y = new(0, 1, 0)
vec3.unit_z = new(0, 0, 1)
if status then
ffi.metatype(new, vec3_mt)
end
return setmetatable({}, vec3_mt)