Landon Manning 449bf861d4 Added ability to divide a number over a vector.
Example: `local s = 1/scale`
2015-09-09 23:14:33 -03:00

257 lines
7.5 KiB
Lua

--[[
Copyright (c) 2010-2013 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
]]--
-- Modified to include 3D capabilities by Bill Shillito, April 2014
-- Various bug fixes by Colby Klein, October 2014
local assert = assert
local sqrt, cos, sin, atan2, acos = math.sqrt, math.cos, math.sin, math.atan2, math.acos
local vector = {}
vector.__index = vector
local function new(x,y,z)
-- allow construction via vec3(a, b, c), vec3 { a, b, c } or vec3 { x = a, y = b, z = c }
if type(x) == "table" then
return setmetatable({x=x.x or x[1] or 0, y=x.y or x[2] or 0, z=x.z or x[3] or 0}, vector)
end
return setmetatable({x = x or 0, y = y or 0, z = z or 0}, vector)
end
local function isvector(v)
return getmetatable(v) == vector or type(v.x and v.y and v.z) == "number"
end
local zero = new(0,0,0)
local unit_x = new(1,0,0)
local unit_y = new(0,1,0)
local unit_z = new(0,0,1)
function vector:clone()
return new(self.x, self.y, self.z)
end
function vector:unpack()
return self.x, self.y, self.z
end
function vector:__tostring()
return string.format("(%+0.3f,%+0.3f,%+0.3f)", self.x, self.y, self.z)
end
function vector.__unm(a)
return new(-a.x, -a.y, -a.z)
end
function vector.__add(a,b)
assert(isvector(a) and isvector(b), "Add: wrong argument types (<vector> expected)")
return new(a.x+b.x, a.y+b.y, a.z+b.z)
end
function vector.__sub(a,b)
assert(isvector(a) and isvector(b), "Sub: wrong argument types (<vector> expected)")
return new(a.x-b.x, a.y-b.y, a.z-b.z)
end
function vector.__mul(a,b)
if type(a) == "number" then
return new(a*b.x, a*b.y, a*b.z)
elseif type(b) == "number" then
return new(b*a.x, b*a.y, b*a.z)
else
assert(isvector(a) and isvector(b), "Mul: wrong argument types (<vector> or <number> expected)")
return new(a.x*b.x, a.y*b.y, a.z*b.z)
end
end
function vector.__div(a,b)
if type(a) == "number" then
return new(a / b.x, a / b.y, a / b.z)
elseif type(b) == "number" then
return new(a.x / b, a.y / b, a.z / b)
else
assert(isvector(a) and isvector(b), "Div: wrong argument types (<vector> or <number> expected)")
return new(a.x/b.x, a.y/b.y, a.z/b.z)
end
end
function vector.__eq(a,b)
return a.x == b.x and a.y == b.y and a.z == b.z
end
function vector.__lt(a,b)
-- This is a lexicographical order.
return a.x < b.x or (a.x == b.x and a.y < b.y) or (a.x == b.x and a.y == b.y and a.z < b.z)
end
function vector.__le(a,b)
-- This is a lexicographical order.
return a.x <= b.x and a.y <= b.y and a.z <= b.z
end
function vector.dot(a,b)
assert(isvector(a) and isvector(b), "dot: wrong argument types (<vector> expected)")
return a.x*b.x + a.y*b.y + a.z*b.z
end
function vector:len2()
return self.x * self.x + self.y * self.y + self.z * self.z
end
function vector:len()
return sqrt(self.x * self.x + self.y * self.y + self.z * self.z)
end
function vector.dist(a, b)
assert(isvector(a) and isvector(b), "dist: wrong argument types (<vector> expected)")
local dx = a.x - b.x
local dy = a.y - b.y
local dz = a.z - b.z
return sqrt(dx * dx + dy * dy + dz * dz)
end
function vector.dist2(a, b)
assert(isvector(a) and isvector(b), "dist: wrong argument types (<vector> expected)")
local dx = a.x - b.x
local dy = a.y - b.y
local dz = a.z - b.z
return (dx * dx + dy * dy + dz * dz)
end
function vector:normalize_inplace()
local l = self:len()
if l > 0 then
self.x, self.y, self.z = self.x / l, self.y / l, self.z / l
end
return self
end
function vector:normalize()
return self:clone():normalize_inplace()
end
function vector:rotate(phi, axis)
if axis == nil then return self end
local u = axis:normalize() or Vector(0,0,1) -- default is to rotate in the xy plane
local c, s = cos(phi), sin(phi)
-- Calculate generalized rotation matrix
local m1 = new((c + u.x * u.x * (1-c)), (u.x * u.y * (1-c) - u.z * s), (u.x * u.z * (1-c) + u.y * s))
local m2 = new((u.y * u.x * (1-c) + u.z * s), (c + u.y * u.y * (1-c)), (u.y * u.z * (1-c) - u.x * s))
local m3 = new((u.z * u.x * (1-c) - u.y * s), (u.z * u.y * (1-c) + u.x * s), (c + u.z * u.z * (1-c)) )
-- Return rotated vector
return new( m1:dot(self), m2:dot(self), m3:dot(self) )
end
function vector:rotate_inplace(phi, axis)
self = self:rotated(phi, axis)
end
function vector:perpendicular()
return new(-self.y, self.x, 0)
end
function vector:project_on(v)
assert(isvector(v), "invalid argument: cannot project vector on " .. type(v))
-- (self * v) * v / v:len2()
local s = (self.x * v.x + self.y * v.y + self.z * v.z) / (v.x * v.x + v.y * v.y + v.z * v.z)
return new(s * v.x, s * v.y, s * v.z)
end
function vector:project_from(v)
assert(isvector(v), "invalid argument: cannot project vector on " .. type(v))
-- Does the reverse of projectOn.
local s = (v.x * v.x + v.y * v.y + v.z * v.z) / (self.x * v.x + self.y * v.y + self.z * v.z)
return new(s * v.x, s * v.y, s * v.z)
end
function vector:mirror_on(v)
assert(isvector(v), "invalid argument: cannot mirror vector on " .. type(v))
local s = 2 * (self.x * v.x + self.y * v.y + self.z * v.z) / (v.x * v.x + v.y * v.y + v.z * v.z)
return new(s * v.x - self.x, s * v.y - self.y, s * v.z - self.z)
end
function vector:cross(v)
assert(isvector(v), "cross: wrong argument types (<vector> expected)")
return new(self.y*v.z - self.z*v.y, self.z*v.x - self.x*v.z, self.x*v.y - self.y*v.x)
end
-- ref.: http://blog.signalsondisplay.com/?p=336
function vector:trim_inplace(maxLen)
local s = maxLen * maxLen / self:len2()
s = (s > 1 and 1) or math.sqrt(s)
self.x, self.y, self.z = self.x * s, self.y * s, self.z * s
return self
end
function vector:angle_to(other)
-- Only makes sense in 2D.
if other then
return atan2(self.y-other.y, self.x-other.x)
end
return atan2(self.y, self.x)
end
function vector:angle_between(other)
if other then
return acos(self*other / (self:len() * other:len()))
end
return 0
end
function vector:trim(maxLen)
return self:clone():trim_inplace(maxLen)
end
function vector:orientation_to_direction(orientation)
orientation = orientation or new(0, 1, 0)
return orientation
:rotated(self.z, new(0, 0, 1))
:rotated(self.y, new(0, 1, 0))
:rotated(self.x, new(1, 0, 0))
end
-- http://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/
function vector.lerp(a, b, s)
return a + s * (b - a)
end
-- the module
return setmetatable(
{
new = new,
isvector = isvector,
zero = zero,
unit_x = unit_x,
unit_y = unit_y,
unit_z = unit_z
}, {
__call = function(_, ...) return new(...) end
}
)