Refactored quat and added doc comments. Fixed some small typos and doc comments in vec2.
This commit is contained in:
parent
c60a324010
commit
85655e65af
440
modules/quat.lua
440
modules/quat.lua
@ -1,87 +1,149 @@
|
||||
--- A quaternion and associated utilities.
|
||||
-- @module quat
|
||||
|
||||
local current_folder = (...):gsub('%.[^%.]+$', '') .. "."
|
||||
|
||||
local constants = require(current_folder .. "constants")
|
||||
local vec3 = require(current_folder .. "vec3")
|
||||
|
||||
local ffi = require "ffi"
|
||||
local DOT_THRESHOLD = constants.DOT_THRESHOLD
|
||||
local FLT_EPSILON = constants.FLT_EPSILON
|
||||
local abs = math.abs
|
||||
local acos = math.acos
|
||||
local asin = math.asin
|
||||
local atan2 = math.atan2
|
||||
local cos = math.cos
|
||||
local sin = math.sin
|
||||
local min = math.min
|
||||
local max = math.max
|
||||
local pi = math.pi
|
||||
local sqrt = math.sqrt
|
||||
|
||||
ffi.cdef[[
|
||||
typedef struct {
|
||||
double x, y, z, w;
|
||||
} cpml_quat;
|
||||
]]
|
||||
local abs, acos, asin, atan2 = math.abs, math.acos, math.asin, math.atan2
|
||||
local cos, sin, min, max, pi = math.cos, math.sin, math.min, math.max, math.pi
|
||||
local sqrt = math.sqrt
|
||||
|
||||
local quat = {}
|
||||
local cpml_quat = ffi.typeof("cpml_quat")
|
||||
quat.new = cpml_quat
|
||||
|
||||
function quat.identity(out)
|
||||
out.x = 0
|
||||
out.y = 0
|
||||
out.z = 0
|
||||
out.w = 1
|
||||
-- Private constructor.
|
||||
local function new(x, y, z, w)
|
||||
local q = {}
|
||||
q.x, q.y, q.z, q.w = x, y, z, w
|
||||
return setmetatable(q, quat_mt)
|
||||
end
|
||||
|
||||
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
|
||||
local status, ffi
|
||||
if type(jit) == "table" and jit.status() then
|
||||
status, ffi = pcall(require, "ffi")
|
||||
if status then
|
||||
ffi.cdef "typedef struct { double x, y, z, w;} cpml_quat;"
|
||||
new = ffi.typeof("cpml_quat")
|
||||
end
|
||||
end
|
||||
|
||||
--- The public constructor.
|
||||
-- @param x Can be of two types: </br>
|
||||
-- number x component
|
||||
-- table {x, y, z, w} or {x = x, y = y, z = z, w = w}
|
||||
-- @tparam number y y component
|
||||
-- @tparam number z z component
|
||||
-- @tparam number w w component
|
||||
function quat.new(x, y, z, w)
|
||||
-- number, number, number, number
|
||||
if x and y and z and w then
|
||||
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
|
||||
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
|
||||
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
|
||||
assert(type(w) == "number", "new: Wrong argument type for w (<number> expected)")
|
||||
|
||||
return new(x, y. z, w)
|
||||
|
||||
-- {x=x, y=y, z=z, w=w} or {x, y, z, w}
|
||||
elseif type(x) == "table" then
|
||||
local x, y, z, w = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4]
|
||||
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
|
||||
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
|
||||
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
|
||||
assert(type(w) == "number", "new: Wrong argument type for w (<number> expected)")
|
||||
|
||||
return new(x, y, z, w)
|
||||
|
||||
else
|
||||
return new(0, 0, 0, 1)
|
||||
end
|
||||
end
|
||||
|
||||
--- Create a quaternion from an axis, angle pair.
|
||||
-- @tparam vec3 axis
|
||||
-- @tparam number angle
|
||||
-- @treturn quat
|
||||
function quat.from_axis_angle(axis, angle)
|
||||
local len = vec3.len(axis)
|
||||
|
||||
local s = sin(angle * 0.5)
|
||||
local c = cos(angle * 0.5)
|
||||
|
||||
return quat.new(axis.x*s, axis.y*s, axis.z*s, c)
|
||||
end
|
||||
|
||||
--- Create a quaternion from a normalized, up vector pair.
|
||||
-- @tparam vec3 normal
|
||||
-- @tparam vec3 up
|
||||
-- @treturn quat
|
||||
function quat.from_direction(normal, up)
|
||||
local d = vec3.dot(up, normal)
|
||||
local a = vec3()
|
||||
vec3.cross(a, up, normal)
|
||||
return quat.new(a.x, a.y, a.z, d+1)
|
||||
end
|
||||
|
||||
--- Clone a quaternion.
|
||||
-- @tparam quat a
|
||||
-- @treturn quat clone
|
||||
function quat.clone(a)
|
||||
local out = quat.new()
|
||||
ffi.copy(out, a, ffi.sizeof(cpml_quat))
|
||||
return out
|
||||
new(a.x, a.y, a.z, a.w)
|
||||
end
|
||||
|
||||
--- Component-wise add a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @treturn quat out
|
||||
function quat.add(out, a, b)
|
||||
out.x = a.x + b.x
|
||||
out.y = a.y + b.y
|
||||
out.z = a.z + b.z
|
||||
out.w = a.w + b.w
|
||||
return out
|
||||
end
|
||||
|
||||
--- Component-wise subtract a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @treturn quat out
|
||||
function quat.sub(out, a, b)
|
||||
out.x = a.x - b.x
|
||||
out.y = a.y - b.y
|
||||
out.z = a.z - b.z
|
||||
out.w = a.w - b.w
|
||||
return out
|
||||
end
|
||||
|
||||
--- Perform a quaternion multiplication.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @treturn quat out
|
||||
function quat.mul(out, a, b)
|
||||
if type(b) == "table" and b.x and b.y and b.z and b.w then
|
||||
out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y
|
||||
out.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z
|
||||
out.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x
|
||||
out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z
|
||||
elseif type(b) == "table" and b.x and b.y and b.z then
|
||||
local qv = vec3(a.x, a.y, a.z)
|
||||
local uv, uuv = vec3(), vec3()
|
||||
vec3.cross(uv, qv, b)
|
||||
vec3.cross(uuv, qv, uv)
|
||||
vec3.mul(out, uv, a.w)
|
||||
vec3.add(out, out, uuv)
|
||||
vec3.mul(out, out, 2)
|
||||
vec3.add(out, b, out)
|
||||
end
|
||||
end
|
||||
|
||||
function quat.div(out, a, b)
|
||||
if type(b) == "number" then
|
||||
quat.scale(out, a, 1 / b)
|
||||
elseif type(b) == "table" and b.x and b.y and b.z and b.w then
|
||||
quat.reciprocal(out, b)
|
||||
quat.mul(out, a, out)
|
||||
end
|
||||
out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y
|
||||
out.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z
|
||||
out.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x
|
||||
out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z
|
||||
return out
|
||||
end
|
||||
|
||||
--- Pow a quaternion by an exponent
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam number n
|
||||
-- @treturn quat out
|
||||
function quat.pow(out, a, n)
|
||||
if n == 0 then
|
||||
quat.identity(out)
|
||||
out.x = 0
|
||||
out.y = 0
|
||||
out.z = 0
|
||||
out.w = 1
|
||||
elseif n > 0 then
|
||||
out.x = a.x^(n-1)
|
||||
out.y = a.y^(n-1)
|
||||
@ -95,46 +157,77 @@ function quat.pow(out, a, n)
|
||||
out.z = out.z^(-n)
|
||||
out.w = out.w^(-n)
|
||||
end
|
||||
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.cross(out, a, b)
|
||||
out.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y
|
||||
out.y = a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z
|
||||
out.z = a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x
|
||||
out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z
|
||||
--- Component-wise scale a quaternion by a scalar.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam number s
|
||||
-- @treturn quat out
|
||||
function quat.scale(out, a, s)
|
||||
out.x = a.x * s
|
||||
out.y = a.y * s
|
||||
out.z = a.z * s
|
||||
out.w = a.w * s
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
|
||||
--- Return the conjugate of a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @treturn quat out
|
||||
function quat.conjugate(out, a)
|
||||
out.x = -a.x
|
||||
out.y = -a.y
|
||||
out.z = -a.z
|
||||
out.w = a.w
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.normalize(out, a)
|
||||
if quat.is_zero(a) then
|
||||
error("Cannot normalize a zero-length quaternion.")
|
||||
return false
|
||||
end
|
||||
|
||||
local l = 1 / quat.len(a)
|
||||
quat.scale(out, a, l)
|
||||
--- Return the inverse of a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @treturn quat out
|
||||
function quat.inverse(out, a)
|
||||
quat.conjugate(out, a)
|
||||
quat.normalize(out, out)
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.len(a)
|
||||
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w)
|
||||
end
|
||||
|
||||
function quat.len2(a)
|
||||
return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w
|
||||
--- Return the reciprocal of a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @treturn quat out
|
||||
function quat.reciprocal(out, a)
|
||||
local l = quat.len2(a)
|
||||
quat.conjugate(out, a)
|
||||
quat.scale(out, out, 1 / l)
|
||||
return out
|
||||
end
|
||||
|
||||
--- Linearly interpolate from one quaternion to the next.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @tparam number s 0-1 range number; 0 = a 1 = b
|
||||
-- @treturn quat out
|
||||
function quat.lerp(out, a, b, s)
|
||||
quat.sub(out, b, a)
|
||||
quat.mul(out, out, s)
|
||||
quat.add(out, a, out)
|
||||
quat.normalize(out, out)
|
||||
return out
|
||||
end
|
||||
|
||||
--- Slerp from one quaternion to the next.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @tparam number s 0-1 range number; 0 = a 1 = b
|
||||
-- @treturn quat out
|
||||
function quat.slerp(out, a, b, s)
|
||||
local function clamp(n, low, high) return min(max(n, low), high) end
|
||||
local dot = quat.dot(a, b)
|
||||
|
||||
if dot < 0 then
|
||||
@ -147,7 +240,7 @@ function quat.slerp(out, a, b, s)
|
||||
return
|
||||
end
|
||||
|
||||
clamp(dot, -1, 1)
|
||||
dot = min(max(dot, -1), 1)
|
||||
local temp = quat.new()
|
||||
local theta = acos(dot) * s
|
||||
|
||||
@ -157,149 +250,96 @@ function quat.slerp(out, a, b, s)
|
||||
quat.scale(out, out, sin(theta))
|
||||
quat.scale(temp, a, cos(theta))
|
||||
quat.add(out, temp, out)
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.rotate(out, angle, axis)
|
||||
local len = vec3.len(axis)
|
||||
|
||||
if abs(len - 1) > FLT_EPSILON then
|
||||
axis.x = axis.x / len
|
||||
axis.y = axis.y / len
|
||||
axis.z = axis.z / len
|
||||
end
|
||||
|
||||
local s = sin(angle * 0.5)
|
||||
local c = cos(angle * 0.5)
|
||||
|
||||
out.x = axis.x * s
|
||||
out.y = axis.y * s
|
||||
out.z = axis.z * s
|
||||
out.w = c
|
||||
--- Normalize a quaternion.
|
||||
-- @tparam quat out
|
||||
-- @tparam quat a
|
||||
-- @treturn quat out
|
||||
function quat.normalize(out, a)
|
||||
local l = 1 / quat.len(a)
|
||||
quat.scale(out, a, l)
|
||||
return out
|
||||
end
|
||||
|
||||
function quat.scale(out, a, s)
|
||||
out.x = a.x * s
|
||||
out.y = a.y * s
|
||||
out.z = a.z * s
|
||||
out.w = a.w * s
|
||||
end
|
||||
|
||||
function quat.conjugate(out, a)
|
||||
out.x = -a.x
|
||||
out.y = -a.y
|
||||
out.z = -a.z
|
||||
out.w = a.w
|
||||
end
|
||||
|
||||
function quat.inverse(out, a)
|
||||
quat.conjugate(out, a)
|
||||
quat.normalize(out, out)
|
||||
end
|
||||
|
||||
function quat.reciprocal(out, a)
|
||||
if quat.is_zero(a) then
|
||||
error("Cannot reciprocate a zero-length quaternion.")
|
||||
return false
|
||||
end
|
||||
|
||||
local l = quat.len2(a)
|
||||
quat.conjugate(out, a)
|
||||
quat.scale(out, out, 1 / l)
|
||||
end
|
||||
|
||||
function quat.is_zero(a)
|
||||
return a.x == 0 and a.y == 0 and a.z == 0 and a.w == 0 then
|
||||
end
|
||||
|
||||
function quat.is_real(a)
|
||||
return a.x == 0 and a.y == 0 and a.z == 0 then
|
||||
end
|
||||
|
||||
function quat.is_imaginary(a)
|
||||
return a.w == 0 then
|
||||
--- Return the imaginary part of the quaternion as a vec3.
|
||||
-- @tparam vec3 out
|
||||
-- @tparam quat a
|
||||
-- @treturn quat out
|
||||
function quat.imaginary(out, a)
|
||||
out.x = a.x
|
||||
out.y = a.y
|
||||
out.z = a.z
|
||||
return out
|
||||
end
|
||||
|
||||
--- Return the real part of a quaternion.
|
||||
-- @tparam quat a
|
||||
-- @treturn number real
|
||||
function quat.real(a)
|
||||
return a.w
|
||||
end
|
||||
|
||||
function quat.imaginary(a)
|
||||
return vec3(a.x, a.y, a.z)
|
||||
--- Return the inner angle between two quaternions.
|
||||
-- @tparam quat a
|
||||
-- @tparam quat b
|
||||
-- @treturn number angle
|
||||
function quat.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
|
||||
end
|
||||
|
||||
function quat.from_direction(out, normal, up)
|
||||
local d = vec3.dot(up, normal)
|
||||
local a = vec3()
|
||||
vec3.cross(a, up, normal)
|
||||
out.x = a.x
|
||||
out.y = a.y
|
||||
out.z = a.z
|
||||
out.w = d + 1
|
||||
--- Return the length of a quaternion.
|
||||
-- @tparam quat a
|
||||
-- @treturn number len
|
||||
function quat.len(a)
|
||||
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w)
|
||||
end
|
||||
|
||||
function quat.to_angle_axis(a)
|
||||
if a.w > 1 or a.w < -1 then
|
||||
quat.normalize(a, a)
|
||||
end
|
||||
|
||||
local angle = 2 * acos(a.w)
|
||||
local s = sqrt(1 - a.w * a.w)
|
||||
local x, y, z
|
||||
|
||||
if s < FLT_EPSILON then
|
||||
x = a.x
|
||||
y = a.y
|
||||
z = a.z
|
||||
else
|
||||
x = a.x / s
|
||||
y = a.y / s
|
||||
z = a.z / s
|
||||
end
|
||||
|
||||
return angle, vec3(x, y, z)
|
||||
end
|
||||
|
||||
function quat.to_euler(a)
|
||||
local sqx = a.x * a.x
|
||||
local sqy = a.y * a.y
|
||||
local sqz = a.z * a.z
|
||||
local sqw = a.w * a.w
|
||||
|
||||
local unit = sqx + sqy + sqz + sqw
|
||||
local test = a.x * a.y + a.z * a.w
|
||||
local pitch, yaw, roll
|
||||
|
||||
if test > 0.499 * unit then
|
||||
pitch = pi / 2
|
||||
yaw = 2 * atan2(a.x, a.w)
|
||||
roll = 0
|
||||
elseif test < -0.499 * unit then
|
||||
pitch = -pi / 2
|
||||
yaw = -2 * atan2(a.x, a.w)
|
||||
roll = 0
|
||||
else
|
||||
pitch = asin(2 * test / unit)
|
||||
yaw = atan2(2 * a.y * a.w - 2 * a.x * a.z, sqx - sqy - sqz + sqw)
|
||||
roll = atan2(2 * a.x * a.w - 2 * a.y * a.z, -sqx + sqy - sqz + sqw)
|
||||
end
|
||||
|
||||
return pitch, yaw, roll
|
||||
--- Return the squared length of a quaternion.
|
||||
-- @tparam quat a
|
||||
-- @treturn number len
|
||||
function quat.len2(a)
|
||||
return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w
|
||||
end
|
||||
|
||||
--- Unpack a quaternion into form x,y,z,w.
|
||||
-- @tparam quat a
|
||||
-- @treturn number x
|
||||
-- @treturn number y
|
||||
-- @treturn number z
|
||||
-- @treturn number w
|
||||
function quat.unpack(a)
|
||||
return a.x, a.y, a.z, a.w
|
||||
end
|
||||
|
||||
--- Return a string formatted "{x, y, z, w}"
|
||||
-- @tparam quat a
|
||||
-- @treturn string
|
||||
function quat.tostring(a)
|
||||
return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w)
|
||||
end
|
||||
|
||||
--- Return a boolean showing if a table is or is not a quat
|
||||
-- @param q object to be tested
|
||||
-- @treturn boolean
|
||||
function quat.isquat(q)
|
||||
return type(v) == "table" and
|
||||
type(v.x) == "number" and
|
||||
type(v.y) == "number" and
|
||||
type(v.z) == "number" and
|
||||
type(v.w) == "number"
|
||||
end
|
||||
|
||||
local quat_mt = {}
|
||||
|
||||
quat_mt.__index = quat
|
||||
quat_mt.__call = quat.new
|
||||
quat_mt.__tostring = quat.tostring
|
||||
|
||||
function quat_mt.__call(self, x, y, z)
|
||||
return quat.new(x, y, z, w)
|
||||
end
|
||||
|
||||
function quat_mt.__unm(a)
|
||||
local temp = quat.new()
|
||||
quat.scale(temp, a, -1)
|
||||
@ -307,32 +347,40 @@ function quat_mt.__unm(a)
|
||||
end
|
||||
|
||||
function quat_mt.__eq(a,b)
|
||||
assert(quat.isquat(a), "__eq: Wrong argument type for left hand operant. (<cpml.quat> expected)")
|
||||
assert(quat.isquat(b), "__eq: Wrong argument type for right hand operant. (<cpml.quat> expected)")
|
||||
return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w
|
||||
end
|
||||
|
||||
function quat_mt.__add(a, b)
|
||||
assert(quat.isquat(a), "__eq: Wrong argument type for left hand operant. (<cpml.quat> expected)")
|
||||
assert(quat.isquat(b), "__eq: Wrong argument type for right hand operant. (<cpml.quat> expected)")
|
||||
|
||||
local temp = quat.new()
|
||||
quat.add(temp, a, b)
|
||||
return temp
|
||||
end
|
||||
|
||||
function quat_mt.__mul(a, b)
|
||||
assert(quat.isquat(a), "__eq: Wrong argument type for left hand operant. (<cpml.quat> expected)")
|
||||
assert(quat.isquat(b), "__eq: Wrong argument type for right hand operant. (<cpml.quat> expected)")
|
||||
|
||||
local temp = quat.new()
|
||||
quat.mul(temp, a, b)
|
||||
return temp
|
||||
end
|
||||
|
||||
function quat_mt.__div(a, b)
|
||||
local temp = quat.new()
|
||||
quat.div(temp, a, b)
|
||||
return temp
|
||||
end
|
||||
|
||||
function quat_mt.__pow(a, n)
|
||||
assert(quat.isquat(a), "__eq: Wrong argument type for left hand operant. (<cpml.quat> expected)")
|
||||
assert(type(b) == "number", "__eq: Wrong argument type for right hand operant. (<number> expected)")
|
||||
|
||||
local temp = quat.new()
|
||||
quat.pow(temp, a, n)
|
||||
return temp
|
||||
end
|
||||
|
||||
ffi.metatype(cpml_quat, quat_mt)
|
||||
if status then
|
||||
ffi.metatype(new, quat_mt)
|
||||
end
|
||||
|
||||
return setmetatable({}, quat_mt)
|
||||
|
@ -1,3 +1,6 @@
|
||||
--- A 2 component vector.
|
||||
-- @module vec2
|
||||
|
||||
local sqrt= math.sqrt
|
||||
local ffi = require "ffi"
|
||||
|
||||
@ -23,10 +26,10 @@ end
|
||||
--- The public constructor.
|
||||
-- @param x Can be of three types: </br>
|
||||
-- number x component
|
||||
-- table {x, y, z} or {x = x, y = y}
|
||||
-- table {x, y} or {x = x, y = y}
|
||||
-- scalar to fill the vector eg. {x, x}
|
||||
-- @tparam number y y component
|
||||
function vec2.new(x, y, z)
|
||||
function vec2.new(x, y)
|
||||
-- number, number, number
|
||||
if x and y then
|
||||
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
|
||||
@ -122,7 +125,7 @@ end
|
||||
--- Get the cross product of two vectors.
|
||||
-- @tparam vec2 a Left hand operant
|
||||
-- @tparam vec2 b Right hand operant
|
||||
-- @tparam number
|
||||
-- @treturn number magnitude of cross product in 3d
|
||||
function vec2.cross(a, b)
|
||||
return a.x * b.y - a.y * b.x
|
||||
end
|
||||
@ -175,7 +178,7 @@ end
|
||||
-- @tparam vec3 b second vector
|
||||
-- @tparam number s step value
|
||||
-- @treturn vec3
|
||||
function vec3.lerp(out, a, b, s)
|
||||
function vec2.lerp(out, a, b, s)
|
||||
vec2.sub(out, b, a)
|
||||
vec2.mul(out, out, s)
|
||||
vec2.add(out, out, a)
|
||||
@ -200,7 +203,7 @@ end
|
||||
--- Return a boolean showing if a table is or is not a vec2
|
||||
-- @param v the object to be tested
|
||||
-- @treturn boolean
|
||||
function vec3.isvector(v)
|
||||
function vec2.isvector(v)
|
||||
return type(v) == "table" and
|
||||
type(v.x) == "number" and
|
||||
type(v.y) == "number"
|
||||
|
Loading…
x
Reference in New Issue
Block a user