2024-01-08 18:16:41 -08:00

294 lines
8.3 KiB
Lua

--- read and write (little endian) binary.
--- located in `mtul.binary`.
--@module binary
local assert, math_huge, math_frexp, math_floor
= assert, math.huge, math.frexp, math.floor
local negative_nan = 0/0
local positive_nan = negative_nan ^ 1
--- reading binary inputs.
-- read a binary inputs using a `read_byte` function.
-- @section reading
-- @see read_byte
--- read an IEEE 754 single precision (32-bit) floating point number
-- @function read_single
-- @param function @{read_byte}
function mtul.binary.read_single(read_byte)
-- First read the mantissa
local mantissa = read_byte() / 0x100
mantissa = (mantissa + read_byte()) / 0x100
-- Second and first byte in big endian: last bit of exponent + 7 bits of mantissa, sign bit + 7 bits of exponent
local exponent_byte = read_byte()
local sign_byte = read_byte()
local sign = 1
if sign_byte >= 0x80 then
sign = -1
sign_byte = sign_byte - 0x80
end
local exponent = sign_byte * 2
if exponent_byte >= 0x80 then
exponent = exponent + 1
exponent_byte = exponent_byte - 0x80
end
mantissa = (mantissa + exponent_byte) / 0x80
if exponent == 0xFF then
if mantissa == 0 then
return sign * math_huge
end
-- Differentiating quiet and signalling nan is not possible in Lua, hence we don't have to do it
return sign == 1 and positive_nan or negative_nan
end
assert(mantissa < 1)
if exponent == 0 then
-- subnormal value
return sign * 2^-126 * mantissa
end
return sign * 2 ^ (exponent - 127) * (1 + mantissa)
end
--- read an IEEE 754 double-precision (64-bit) floating point number
-- @function read_double
-- @param function @{read_byte}
function mtul.binary.read_double(read_byte)
-- First read the mantissa
local mantissa = 0
for _ = 1, 6 do
mantissa = (mantissa + read_byte()) / 0x100
end
-- Second and first byte in big endian: last 4 bits of exponent + 4 bits of mantissa; sign bit + 7 bits of exponent
local exponent_byte = read_byte()
local sign_byte = read_byte()
local sign = 1
if sign_byte >= 0x80 then
sign = -1
sign_byte = sign_byte - 0x80
end
local exponent = sign_byte * 0x10
local mantissa_bits = exponent_byte % 0x10
exponent = exponent + (exponent_byte - mantissa_bits) / 0x10
mantissa = (mantissa + mantissa_bits) / 0x10
if exponent == 0x7FF then
if mantissa == 0 then
return sign * math_huge
end
-- Differentiating quiet and signalling nan is not possible in Lua, hence we don't have to do it
return sign == 1 and positive_nan or negative_nan
end
assert(mantissa < 1)
if exponent == 0 then
-- subnormal value
return sign * 2^-1022 * mantissa
end
return sign * 2 ^ (exponent - 1023) * (1 + mantissa)
end
--- read an unsigned integer of any given length
-- @function read_uint
-- @param function @{read_byte}
-- @param int length in bytes of unsigned integer
function mtul.binary.read_uint(read_byte, bytes)
local factor = 1
local uint = 0
for _ = 1, bytes do
uint = uint + read_byte() * factor
factor = factor * 0x100
end
return uint
end
--- read a signed integer of any given length
-- @function read_uint
-- @param function @{read_byte}
-- @param int length in bytes of integer
function mtul.binary.read_int(read_byte, bytes)
local uint = mtul.binary.read_uint(read_byte, bytes)
local max = 0x100 ^ bytes
if uint >= max / 2 then
return uint - max
end
return uint
end
--- writing binary
-- documentation needed
-- @section write
-- @fixme add documentation
function mtul.binary.write_uint(write_byte, uint, bytes)
for _ = 1, bytes do
write_byte(uint % 0x100)
uint = math_floor(uint / 0x100)
end
assert(uint == 0)
end
function mtul.binary.write_int(write_byte, int, bytes)
local max = 0x100 ^ bytes
if int < 0 then
assert(-int <= max / 2)
int = max + int
else
assert(int < max / 2)
end
return mtul.binary.write_uint(write_byte, int, bytes)
end
function mtul.binary.write_single(write_byte, number)
if number ~= number then -- nan: all ones
for _ = 1, 4 do write_byte(0xFF) end
return
end
local sign_byte, exponent_byte, mantissa_byte_1, mantissa_byte_2
local sign_bit = 0
if number < 0 then
number = -number
sign_bit = 0x80
end
if number == math_huge then -- inf: exponent = all 1, mantissa = all 0
sign_byte, exponent_byte, mantissa_byte_1, mantissa_byte_2 = sign_bit + 0x7F, 0x80, 0, 0
else -- real number
local mantissa, exponent = math_frexp(number)
if exponent <= -126 or number == 0 then -- must write a subnormal number
mantissa = mantissa * 2 ^ (exponent + 126)
exponent = 0
else -- normal numbers are stored as 1.<mantissa>
mantissa = mantissa * 2 - 1
exponent = exponent - 1 + 127 -- mantissa << 1 <=> exponent--
assert(exponent < 0xFF)
end
local exp_lowest_bit = exponent % 2
sign_byte = sign_bit + (exponent - exp_lowest_bit) / 2
mantissa = mantissa * 0x80
exponent_byte = exp_lowest_bit * 0x80 + math_floor(mantissa)
mantissa = mantissa % 1
mantissa = mantissa * 0x100
mantissa_byte_1 = math_floor(mantissa)
mantissa = mantissa % 1
mantissa = mantissa * 0x100
mantissa_byte_2 = math_floor(mantissa)
mantissa = mantissa % 1
assert(mantissa == 0) -- no truncation allowed: round numbers properly using modlib.math.fround
end
write_byte(mantissa_byte_2)
write_byte(mantissa_byte_1)
write_byte(exponent_byte)
write_byte(sign_byte)
end
function mtul.binary.write_double(write_byte, number)
if number ~= number then -- nan: all ones
for _ = 1, 8 do write_byte(0xFF) end
return
end
local sign_byte, exponent_byte, mantissa_bytes
local sign_bit = 0
if number < 0 then
number = -number
sign_bit = 0x80
end
if number == math_huge then -- inf: exponent = all 1, mantissa = all 0
sign_byte, exponent_byte, mantissa_bytes = sign_bit + 0x7F, 0xF0, {0, 0, 0, 0, 0, 0}
else -- real number
local mantissa, exponent = math_frexp(number)
if exponent <= -1022 or number == 0 then -- must write a subnormal number
mantissa = mantissa * 2 ^ (exponent + 1022)
exponent = 0
else -- normal numbers are stored as 1.<mantissa>
mantissa = mantissa * 2 - 1
exponent = exponent - 1 + 1023 -- mantissa << 1 <=> exponent--
assert(exponent < 0x7FF)
end
local exp_low_nibble = exponent % 0x10
sign_byte = sign_bit + (exponent - exp_low_nibble) / 0x10
mantissa = mantissa * 0x10
exponent_byte = exp_low_nibble * 0x10 + math_floor(mantissa)
mantissa = mantissa % 1
mantissa_bytes = {}
for i = 1, 6 do
mantissa = mantissa * 0x100
mantissa_bytes[i] = math_floor(mantissa)
mantissa = mantissa % 1
end
assert(mantissa == 0)
end
for i = 6, 1, -1 do
write_byte(mantissa_bytes[i])
end
write_byte(exponent_byte)
write_byte(sign_byte)
end
function mtul.binary.write_float(write_byte, number, double)
(double and mtul.binary.write_double or mtul.binary.write_single)(write_byte, number)
end
--- misc binary helpers
-- @section misc
--- "returns nearest 32-bit single precision float representation of a number" (or something)
-- @function fround()
-- @param number
-- @return nearest 32-bit single precision float representation of a number
function mtul.binary.fround(number)
if number == 0 or number ~= number then
return number
end
local sign = 1
if number < 0 then
sign = -1
number = -number
end
local _, exp = math.frexp(number)
exp = exp - 1 -- we want 2^exponent >= number > 2^(exponent-1)
local powexp = 2 ^ math.max(-126, math.min(exp, 127))
local leading = exp <= -127 and 0 or 1 -- subnormal number?
local mantissa = math.floor((number / powexp - leading) * 0x800000 + 0.5)
if
mantissa > 0x800000 -- doesn't fit in mantissa
or (exp >= 127 and mantissa == 0x800000) -- fits if the exponent can be increased
then
return sign * inf
end
return sign * powexp * (leading + mantissa / 0x800000)
end
--- expected function inputs.
-- functions will expect either a `read_byte` or `write_byte` function as inputs
-- @section input
--- `read_byte` is a param name which refers to a function which reads the next byte- returning a whole number between 0-255.
--
-- function byte()
-- left = left - 1
-- return assert(file_handle:read(1):byte())
-- --reads the next chracter, and converts it to a "numerical code" using string.byte()
-- --it's important that this function moves forward in the file stream (as :read(1) does)
-- end
-- @function read_byte
-- @return a bytecode (an int between 0 and 255.)
--- `write_byte` is similar to read_byte, however it is given an input and expected to write it to the file.
-- (example needed)
-- @function write_byte