added various depends for MTUL-b3d
This commit is contained in:
parent
69cff88c84
commit
885eb5809f
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
WARNING, THIS LICENSE ONLY APPLIES TO DIRECTORIES WHICH DO NOT OTHERWISE CONTAIN
|
||||
ANY OF THE FOLLOWING FILENAMES "License.txt, LICENSE, LICENSE.TXT" (or any other
|
||||
file otherwise named the word 'license' in some comiation", OTHERWISE THE LICENSE
|
||||
file otherwise named the word 'license' in some comiation"), OTHERWISE THE LICENSE
|
||||
CONTAINED WITHIN THAT DIRECTORY APPLIES TO THOSE FILES.
|
||||
|
||||
MIT License
|
||||
|
16
init.lua
16
init.lua
@ -0,0 +1,16 @@
|
||||
mtul = {
|
||||
binary = {}, --provided entirely by modlib.
|
||||
tbl = {} --modified by libs.modlib, source.
|
||||
}
|
||||
|
||||
--optionally allow user to overset local math with mtul while still keeping core funcs & consts.
|
||||
mtul.math = {}
|
||||
for i, v in pairs(math) do
|
||||
mtul[i] = v
|
||||
end
|
||||
|
||||
--run files. These will directly modify the mtul sub tables.
|
||||
mtul.path = minetest.get_modpath("MTUL-core")
|
||||
dofile(mtul.path.."/libs/modlib/binary.lua")
|
||||
dofile(mtul.path.."/libs/modlib/table.lua")
|
||||
dofile(mtul.path.."/libs/modlib/math.lua")
|
233
libs/modlib/binary.lua
Normal file
233
libs/modlib/binary.lua
Normal file
@ -0,0 +1,233 @@
|
||||
-- Localize globals
|
||||
local assert, math_huge, math_frexp, math_floor
|
||||
= assert, math.huge, math.frexp, math.floor
|
||||
|
||||
--apparently he had to make these globals lmfao
|
||||
local negative_nan = 0/0
|
||||
local positive_nan = negative_nan ^ 1
|
||||
|
||||
-- All little endian
|
||||
|
||||
--+ Reads an IEEE 754 single-precision floating point number (f32)
|
||||
function mtul.binary.read_single(read_byte)
|
||||
-- First read the mantissa
|
||||
local mantissa = read_byte() / 0x100
|
||||
mantissa = (mantissa + read_byte()) / 0x100
|
||||
|
||||
-- Second and first byte in big endian: last bit of exponent + 7 bits of mantissa, sign bit + 7 bits of exponent
|
||||
local exponent_byte = read_byte()
|
||||
local sign_byte = read_byte()
|
||||
local sign = 1
|
||||
if sign_byte >= 0x80 then
|
||||
sign = -1
|
||||
sign_byte = sign_byte - 0x80
|
||||
end
|
||||
local exponent = sign_byte * 2
|
||||
if exponent_byte >= 0x80 then
|
||||
exponent = exponent + 1
|
||||
exponent_byte = exponent_byte - 0x80
|
||||
end
|
||||
mantissa = (mantissa + exponent_byte) / 0x80
|
||||
if exponent == 0xFF then
|
||||
if mantissa == 0 then
|
||||
return sign * math_huge
|
||||
end
|
||||
-- Differentiating quiet and signalling nan is not possible in Lua, hence we don't have to do it
|
||||
return sign == 1 and positive_nan or negative_nan
|
||||
end
|
||||
assert(mantissa < 1)
|
||||
if exponent == 0 then
|
||||
-- subnormal value
|
||||
return sign * 2^-126 * mantissa
|
||||
end
|
||||
return sign * 2 ^ (exponent - 127) * (1 + mantissa)
|
||||
end
|
||||
|
||||
--+ Reads an IEEE 754 double-precision floating point number (f64)
|
||||
function mtul.binary.read_double(read_byte)
|
||||
-- First read the mantissa
|
||||
local mantissa = 0
|
||||
for _ = 1, 6 do
|
||||
mantissa = (mantissa + read_byte()) / 0x100
|
||||
end
|
||||
-- Second and first byte in big endian: last 4 bits of exponent + 4 bits of mantissa; sign bit + 7 bits of exponent
|
||||
local exponent_byte = read_byte()
|
||||
local sign_byte = read_byte()
|
||||
local sign = 1
|
||||
if sign_byte >= 0x80 then
|
||||
sign = -1
|
||||
sign_byte = sign_byte - 0x80
|
||||
end
|
||||
local exponent = sign_byte * 0x10
|
||||
local mantissa_bits = exponent_byte % 0x10
|
||||
exponent = exponent + (exponent_byte - mantissa_bits) / 0x10
|
||||
mantissa = (mantissa + mantissa_bits) / 0x10
|
||||
if exponent == 0x7FF then
|
||||
if mantissa == 0 then
|
||||
return sign * math_huge
|
||||
end
|
||||
-- Differentiating quiet and signalling nan is not possible in Lua, hence we don't have to do it
|
||||
return sign == 1 and positive_nan or negative_nan
|
||||
end
|
||||
assert(mantissa < 1)
|
||||
if exponent == 0 then
|
||||
-- subnormal value
|
||||
return sign * 2^-1022 * mantissa
|
||||
end
|
||||
return sign * 2 ^ (exponent - 1023) * (1 + mantissa)
|
||||
end
|
||||
|
||||
--+ Reads doubles (f64) or floats (f32)
|
||||
--: double reads an f64 if true, f32 otherwise
|
||||
function mtul.binary.read_float(read_byte, double)
|
||||
return (double and read_double or read_single)(read_byte)
|
||||
end
|
||||
|
||||
function mtul.binary.read_uint(read_byte, bytes)
|
||||
local factor = 1
|
||||
local uint = 0
|
||||
for _ = 1, bytes do
|
||||
uint = uint + read_byte() * factor
|
||||
factor = factor * 0x100
|
||||
end
|
||||
return uint
|
||||
end
|
||||
|
||||
function mtul.binary.read_int(read_byte, bytes)
|
||||
local uint = read_uint(read_byte, bytes)
|
||||
local max = 0x100 ^ bytes
|
||||
if uint >= max / 2 then
|
||||
return uint - max
|
||||
end
|
||||
return uint
|
||||
end
|
||||
|
||||
function mtul.binary.write_uint(write_byte, uint, bytes)
|
||||
for _ = 1, bytes do
|
||||
write_byte(uint % 0x100)
|
||||
uint = math_floor(uint / 0x100)
|
||||
end
|
||||
assert(uint == 0)
|
||||
end
|
||||
|
||||
function mtul.binary.write_int(write_byte, int, bytes)
|
||||
local max = 0x100 ^ bytes
|
||||
if int < 0 then
|
||||
assert(-int <= max / 2)
|
||||
int = max + int
|
||||
else
|
||||
assert(int < max / 2)
|
||||
end
|
||||
return write_uint(write_byte, int, bytes)
|
||||
end
|
||||
|
||||
function mtul.binary.write_single(write_byte, number)
|
||||
if number ~= number then -- nan: all ones
|
||||
for _ = 1, 4 do write_byte(0xFF) end
|
||||
return
|
||||
end
|
||||
|
||||
local sign_byte, exponent_byte, mantissa_byte_1, mantissa_byte_2
|
||||
|
||||
local sign_bit = 0
|
||||
if number < 0 then
|
||||
number = -number
|
||||
sign_bit = 0x80
|
||||
end
|
||||
|
||||
if number == math_huge then -- inf: exponent = all 1, mantissa = all 0
|
||||
sign_byte, exponent_byte, mantissa_byte_1, mantissa_byte_2 = sign_bit + 0x7F, 0x80, 0, 0
|
||||
else -- real number
|
||||
local mantissa, exponent = math_frexp(number)
|
||||
if exponent <= -126 or number == 0 then -- must write a subnormal number
|
||||
mantissa = mantissa * 2 ^ (exponent + 126)
|
||||
exponent = 0
|
||||
else -- normal numbers are stored as 1.<mantissa>
|
||||
mantissa = mantissa * 2 - 1
|
||||
exponent = exponent - 1 + 127 -- mantissa << 1 <=> exponent--
|
||||
assert(exponent < 0xFF)
|
||||
end
|
||||
|
||||
local exp_lowest_bit = exponent % 2
|
||||
|
||||
sign_byte = sign_bit + (exponent - exp_lowest_bit) / 2
|
||||
|
||||
mantissa = mantissa * 0x80
|
||||
exponent_byte = exp_lowest_bit * 0x80 + math_floor(mantissa)
|
||||
mantissa = mantissa % 1
|
||||
|
||||
mantissa = mantissa * 0x100
|
||||
mantissa_byte_1 = math_floor(mantissa)
|
||||
mantissa = mantissa % 1
|
||||
|
||||
mantissa = mantissa * 0x100
|
||||
mantissa_byte_2 = math_floor(mantissa)
|
||||
mantissa = mantissa % 1
|
||||
|
||||
assert(mantissa == 0) -- no truncation allowed: round numbers properly using modlib.math.fround
|
||||
end
|
||||
|
||||
write_byte(mantissa_byte_2)
|
||||
write_byte(mantissa_byte_1)
|
||||
write_byte(exponent_byte)
|
||||
write_byte(sign_byte)
|
||||
end
|
||||
|
||||
function mtul.binary.write_double(write_byte, number)
|
||||
if number ~= number then -- nan: all ones
|
||||
for _ = 1, 8 do write_byte(0xFF) end
|
||||
return
|
||||
end
|
||||
|
||||
local sign_byte, exponent_byte, mantissa_bytes
|
||||
|
||||
local sign_bit = 0
|
||||
if number < 0 then
|
||||
number = -number
|
||||
sign_bit = 0x80
|
||||
end
|
||||
|
||||
if number == math_huge then -- inf: exponent = all 1, mantissa = all 0
|
||||
sign_byte, exponent_byte, mantissa_bytes = sign_bit + 0x7F, 0xF0, {0, 0, 0, 0, 0, 0}
|
||||
else -- real number
|
||||
local mantissa, exponent = math_frexp(number)
|
||||
if exponent <= -1022 or number == 0 then -- must write a subnormal number
|
||||
mantissa = mantissa * 2 ^ (exponent + 1022)
|
||||
exponent = 0
|
||||
else -- normal numbers are stored as 1.<mantissa>
|
||||
mantissa = mantissa * 2 - 1
|
||||
exponent = exponent - 1 + 1023 -- mantissa << 1 <=> exponent--
|
||||
assert(exponent < 0x7FF)
|
||||
end
|
||||
|
||||
local exp_low_nibble = exponent % 0x10
|
||||
|
||||
sign_byte = sign_bit + (exponent - exp_low_nibble) / 0x10
|
||||
|
||||
mantissa = mantissa * 0x10
|
||||
exponent_byte = exp_low_nibble * 0x10 + math_floor(mantissa)
|
||||
mantissa = mantissa % 1
|
||||
|
||||
mantissa_bytes = {}
|
||||
for i = 1, 6 do
|
||||
mantissa = mantissa * 0x100
|
||||
mantissa_bytes[i] = math_floor(mantissa)
|
||||
mantissa = mantissa % 1
|
||||
end
|
||||
assert(mantissa == 0)
|
||||
end
|
||||
|
||||
for i = 6, 1, -1 do
|
||||
write_byte(mantissa_bytes[i])
|
||||
end
|
||||
write_byte(exponent_byte)
|
||||
write_byte(sign_byte)
|
||||
end
|
||||
|
||||
--: on_write function(double)
|
||||
--: double true - f64, false - f32
|
||||
function mtul.binary.write_float(write_byte, number, double)
|
||||
(double and write_double or write_single)(write_byte, number)
|
||||
end
|
||||
|
||||
-- Export environment
|
22
libs/modlib/math.lua
Normal file
22
libs/modlib/math.lua
Normal file
@ -0,0 +1,22 @@
|
||||
function mtul.math.fround(number)
|
||||
if number == 0 or number ~= number then
|
||||
return number
|
||||
end
|
||||
local sign = 1
|
||||
if number < 0 then
|
||||
sign = -1
|
||||
number = -number
|
||||
end
|
||||
local _, exp = math.frexp(number)
|
||||
exp = exp - 1 -- we want 2^exponent >= number > 2^(exponent-1)
|
||||
local powexp = 2 ^ math.max(-126, math.min(exp, 127))
|
||||
local leading = exp <= -127 and 0 or 1 -- subnormal number?
|
||||
local mantissa = math.floor((number / powexp - leading) * 0x800000 + 0.5)
|
||||
if
|
||||
mantissa > 0x800000 -- doesn't fit in mantissa
|
||||
or (exp >= 127 and mantissa == 0x800000) -- fits if the exponent can be increased
|
||||
then
|
||||
return sign * inf
|
||||
end
|
||||
return sign * powexp * (leading + mantissa / 0x800000)
|
||||
end
|
18
libs/modlib/table.lua
Normal file
18
libs/modlib/table.lua
Normal file
@ -0,0 +1,18 @@
|
||||
|
||||
--adds a list to the end of another list without ovewriting data.
|
||||
function mtul.tbl.append(table, other_table)
|
||||
local length = #table
|
||||
for index, value in ipairs(other_table) do
|
||||
table[length + index] = value
|
||||
end
|
||||
return table
|
||||
end
|
||||
|
||||
--this... I guess lists keys by their order??? I have no idea, depended on by b3d standalone.
|
||||
function mtul.tbl.keys(table)
|
||||
local keys = {}
|
||||
for key, _ in pairs(table) do
|
||||
keys[#keys + 1] = key
|
||||
end
|
||||
return keys
|
||||
end
|
4
mod.conf
Normal file
4
mod.conf
Normal file
@ -0,0 +1,4 @@
|
||||
name = "MTUL-core"
|
||||
title = "MTUL core dependancies for other mtul mods/modules."
|
||||
description = "integrates various dependancies, implements some universal math features."
|
||||
author = "FatalError42O, Appgurue"
|
0
tables.lua
Normal file
0
tables.lua
Normal file
Loading…
x
Reference in New Issue
Block a user