Vector functions: Fix vector.direction() function, improve documentation (#6801)
vector.direction() now returns a normalised vector with direction p1 to p2.master
parent
18b921015a
commit
d04c41ad80
|
@ -63,34 +63,13 @@ function vector.distance(a, b)
|
||||||
end
|
end
|
||||||
|
|
||||||
function vector.direction(pos1, pos2)
|
function vector.direction(pos1, pos2)
|
||||||
local x_raw = pos2.x - pos1.x
|
return vector.normalize({
|
||||||
local y_raw = pos2.y - pos1.y
|
x = pos2.x - pos1.x,
|
||||||
local z_raw = pos2.z - pos1.z
|
y = pos2.y - pos1.y,
|
||||||
local x_abs = math.abs(x_raw)
|
z = pos2.z - pos1.z
|
||||||
local y_abs = math.abs(y_raw)
|
})
|
||||||
local z_abs = math.abs(z_raw)
|
|
||||||
if x_abs >= y_abs and
|
|
||||||
x_abs >= z_abs then
|
|
||||||
y_raw = y_raw * (1 / x_abs)
|
|
||||||
z_raw = z_raw * (1 / x_abs)
|
|
||||||
x_raw = x_raw / x_abs
|
|
||||||
end
|
|
||||||
if y_abs >= x_abs and
|
|
||||||
y_abs >= z_abs then
|
|
||||||
x_raw = x_raw * (1 / y_abs)
|
|
||||||
z_raw = z_raw * (1 / y_abs)
|
|
||||||
y_raw = y_raw / y_abs
|
|
||||||
end
|
|
||||||
if z_abs >= y_abs and
|
|
||||||
z_abs >= x_abs then
|
|
||||||
x_raw = x_raw * (1 / z_abs)
|
|
||||||
y_raw = y_raw * (1 / z_abs)
|
|
||||||
z_raw = z_raw / z_abs
|
|
||||||
end
|
|
||||||
return {x=x_raw, y=y_raw, z=z_raw}
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
function vector.add(a, b)
|
function vector.add(a, b)
|
||||||
if type(b) == "table" then
|
if type(b) == "table" then
|
||||||
return {x = a.x + b.x,
|
return {x = a.x + b.x,
|
||||||
|
|
|
@ -2248,25 +2248,43 @@ The following functions provide escape sequences:
|
||||||
|
|
||||||
Spatial Vectors
|
Spatial Vectors
|
||||||
---------------
|
---------------
|
||||||
* `vector.new(a[, b, c])`: returns a vector:
|
For the following functions, `v`, `v1`, `v2` are vectors, `p1`, `p2` are positions:
|
||||||
|
|
||||||
|
* `vector.new(a[, b, c])`:
|
||||||
|
* Returns a vector.
|
||||||
* A copy of `a` if `a` is a vector.
|
* A copy of `a` if `a` is a vector.
|
||||||
* `{x = a, y = b, z = c}`, if all `a, b, c` are defined
|
* `{x = a, y = b, z = c}`, if all of `a`, `b`, `c` are defined numbers.
|
||||||
* `vector.direction(p1, p2)`: returns a vector
|
* `vector.direction(p1, p2)`:
|
||||||
* `vector.distance(p1, p2)`: returns a number
|
* Returns a vector of length 1 with direction `p1` to `p2`.
|
||||||
* `vector.length(v)`: returns a number
|
* If `p1` and `p2` are identical, returns `{x = 0, y = 0, z = 0}`.
|
||||||
* `vector.normalize(v)`: returns a vector
|
* `vector.distance(p1, p2)`:
|
||||||
* `vector.floor(v)`: returns a vector, each dimension rounded down
|
* Returns zero or a positive number, the distance between `p1` and `p2`.
|
||||||
* `vector.round(v)`: returns a vector, each dimension rounded to nearest int
|
* `vector.length(v)`:
|
||||||
* `vector.apply(v, func)`: returns a vector
|
* Returns zero or a positive number, the length of vector `v`.
|
||||||
* `vector.equals(v1, v2)`: returns a boolean
|
* `vector.normalize(v)`:
|
||||||
* `vector.sort(v1, v2)`: returns minp, maxp vectors of the cuboid defined by v1 and v2
|
* Returns a vector of length 1 with direction of vector `v`.
|
||||||
|
* If `v` has zero length, returns `{x = 0, y = 0, z = 0}`.
|
||||||
|
* `vector.floor(v)`:
|
||||||
|
* Returns a vector, each dimension rounded down.
|
||||||
|
* `vector.round(v)`:
|
||||||
|
* Returns a vector, each dimension rounded to nearest integer.
|
||||||
|
* `vector.apply(v, func)`:
|
||||||
|
* Returns a vector where the function `func` has been applied to each component.
|
||||||
|
* `vector.equals(v1, v2)`:
|
||||||
|
* Returns a boolean, `true` if the vectors are identical.
|
||||||
|
* `vector.sort(v1, v2)`:
|
||||||
|
* Returns in order minp, maxp vectors of the cuboid defined by `v1`, `v2`.
|
||||||
|
|
||||||
For the following functions `x` can be either a vector or a number:
|
For the following functions `x` can be either a vector or a number:
|
||||||
|
|
||||||
* `vector.add(v, x)`: returns a vector
|
* `vector.add(v, x)`:
|
||||||
* `vector.subtract(v, x)`: returns a vector
|
* Returns a vector.
|
||||||
* `vector.multiply(v, x)`: returns a scaled vector or Schur product
|
* `vector.subtract(v, x)`:
|
||||||
* `vector.divide(v, x)`: returns a scaled vector or Schur quotient
|
* Returns a vector.
|
||||||
|
* `vector.multiply(v, x)`:
|
||||||
|
* Returns a scaled vector or Schur product.
|
||||||
|
* `vector.divide(v, x)`:
|
||||||
|
* Returns a scaled vector or Schur quotient.
|
||||||
|
|
||||||
Helper functions
|
Helper functions
|
||||||
----------------
|
----------------
|
||||||
|
|
Loading…
Reference in New Issue