openal-soft/Alc/panning.cpp

1222 lines
45 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "alconfig.h"
#include "ambdec.h"
#include "bformatdec.h"
#include "filters/splitter.h"
#include "uhjfilter.h"
#include "bs2b.h"
namespace {
constexpr ALsizei FuMa2ACN[MAX_AMBI_COEFFS] = {
0, /* W */
3, /* X */
1, /* Y */
2, /* Z */
6, /* R */
7, /* S */
5, /* T */
8, /* U */
4, /* V */
12, /* K */
13, /* L */
11, /* M */
14, /* N */
10, /* O */
15, /* P */
9, /* Q */
};
constexpr ALsizei ACN2ACN[MAX_AMBI_COEFFS] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15
};
} // namespace
void CalcAmbiCoeffs(const ALfloat y, const ALfloat z, const ALfloat x, const ALfloat spread,
ALfloat coeffs[MAX_AMBI_COEFFS])
{
/* Zeroth-order */
coeffs[0] = 1.0f; /* ACN 0 = 1 */
/* First-order */
coeffs[1] = SQRTF_3 * y; /* ACN 1 = sqrt(3) * Y */
coeffs[2] = SQRTF_3 * z; /* ACN 2 = sqrt(3) * Z */
coeffs[3] = SQRTF_3 * x; /* ACN 3 = sqrt(3) * X */
/* Second-order */
coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
/* Third-order */
coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
if(spread > 0.0f)
{
/* Implement the spread by using a spherical source that subtends the
* angle spread. See:
* http://www.ppsloan.org/publications/StupidSH36.pdf - Appendix A3
*
* When adjusted for N3D normalization instead of SN3D, these
* calculations are:
*
* ZH0 = -sqrt(pi) * (-1+ca);
* ZH1 = 0.5*sqrt(pi) * sa*sa;
* ZH2 = -0.5*sqrt(pi) * ca*(-1+ca)*(ca+1);
* ZH3 = -0.125*sqrt(pi) * (-1+ca)*(ca+1)*(5*ca*ca - 1);
* ZH4 = -0.125*sqrt(pi) * ca*(-1+ca)*(ca+1)*(7*ca*ca - 3);
* ZH5 = -0.0625*sqrt(pi) * (-1+ca)*(ca+1)*(21*ca*ca*ca*ca - 14*ca*ca + 1);
*
* The gain of the source is compensated for size, so that the
* loundness doesn't depend on the spread. Thus:
*
* ZH0 = 1.0f;
* ZH1 = 0.5f * (ca+1.0f);
* ZH2 = 0.5f * (ca+1.0f)*ca;
* ZH3 = 0.125f * (ca+1.0f)*(5.0f*ca*ca - 1.0f);
* ZH4 = 0.125f * (ca+1.0f)*(7.0f*ca*ca - 3.0f)*ca;
* ZH5 = 0.0625f * (ca+1.0f)*(21.0f*ca*ca*ca*ca - 14.0f*ca*ca + 1.0f);
*/
ALfloat ca = cosf(spread * 0.5f);
/* Increase the source volume by up to +3dB for a full spread. */
ALfloat scale = sqrtf(1.0f + spread/F_TAU);
ALfloat ZH0_norm = scale;
ALfloat ZH1_norm = 0.5f * (ca+1.f) * scale;
ALfloat ZH2_norm = 0.5f * (ca+1.f)*ca * scale;
ALfloat ZH3_norm = 0.125f * (ca+1.f)*(5.f*ca*ca-1.f) * scale;
/* Zeroth-order */
coeffs[0] *= ZH0_norm;
/* First-order */
coeffs[1] *= ZH1_norm;
coeffs[2] *= ZH1_norm;
coeffs[3] *= ZH1_norm;
/* Second-order */
coeffs[4] *= ZH2_norm;
coeffs[5] *= ZH2_norm;
coeffs[6] *= ZH2_norm;
coeffs[7] *= ZH2_norm;
coeffs[8] *= ZH2_norm;
/* Third-order */
coeffs[9] *= ZH3_norm;
coeffs[10] *= ZH3_norm;
coeffs[11] *= ZH3_norm;
coeffs[12] *= ZH3_norm;
coeffs[13] *= ZH3_norm;
coeffs[14] *= ZH3_norm;
coeffs[15] *= ZH3_norm;
}
}
void ComputePanningGainsMC(const ChannelConfig *chancoeffs, ALsizei numchans, ALsizei numcoeffs, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALsizei i, j;
for(i = 0;i < numchans;i++)
{
float gain = 0.0f;
for(j = 0;j < numcoeffs;j++)
gain += chancoeffs[i][j]*coeffs[j];
gains[i] = clampf(gain, 0.0f, 1.0f) * ingain;
}
for(;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
}
void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALsizei i;
for(i = 0;i < numchans;i++)
gains[i] = chanmap[i].Scale * coeffs[chanmap[i].Index] * ingain;
for(;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
}
static inline const char *GetLabelFromChannel(enum Channel channel)
{
switch(channel)
{
case FrontLeft: return "front-left";
case FrontRight: return "front-right";
case FrontCenter: return "front-center";
case LFE: return "lfe";
case BackLeft: return "back-left";
case BackRight: return "back-right";
case BackCenter: return "back-center";
case SideLeft: return "side-left";
case SideRight: return "side-right";
case UpperFrontLeft: return "upper-front-left";
case UpperFrontRight: return "upper-front-right";
case UpperBackLeft: return "upper-back-left";
case UpperBackRight: return "upper-back-right";
case LowerFrontLeft: return "lower-front-left";
case LowerFrontRight: return "lower-front-right";
case LowerBackLeft: return "lower-back-left";
case LowerBackRight: return "lower-back-right";
case Aux0: return "aux-0";
case Aux1: return "aux-1";
case Aux2: return "aux-2";
case Aux3: return "aux-3";
case Aux4: return "aux-4";
case Aux5: return "aux-5";
case Aux6: return "aux-6";
case Aux7: return "aux-7";
case Aux8: return "aux-8";
case Aux9: return "aux-9";
case Aux10: return "aux-10";
case Aux11: return "aux-11";
case Aux12: return "aux-12";
case Aux13: return "aux-13";
case Aux14: return "aux-14";
case Aux15: return "aux-15";
case InvalidChannel: break;
}
return "(unknown)";
}
struct ChannelMap {
Channel ChanName;
ChannelConfig Config;
};
static void SetChannelMap(const Channel (&devchans)[MAX_OUTPUT_CHANNELS],
ChannelConfig *ambicoeffs, const ChannelMap *chanmap,
ALsizei count, ALsizei *outcount)
{
ALsizei maxchans{0};
std::for_each(chanmap, chanmap+count,
[&maxchans,&devchans,ambicoeffs](const ChannelMap &channel) -> void
{
ALint idx = GetChannelIndex(devchans, channel.ChanName);
if(idx < 0)
{
ERR("Failed to find %s channel in device\n",
GetLabelFromChannel(channel.ChanName));
return;
}
maxchans = maxi(maxchans, idx+1);
std::copy_n(channel.Config, MAX_AMBI_COEFFS, ambicoeffs[idx]);
}
);
*outcount = mini(maxchans, MAX_OUTPUT_CHANNELS);
}
static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALsizei speakermap[MAX_OUTPUT_CHANNELS])
{
ALsizei i;
for(i = 0;i < conf->NumSpeakers;i++)
{
enum Channel ch;
int chidx = -1;
/* NOTE: AmbDec does not define any standard speaker names, however
* for this to work we have to by able to find the output channel
* the speaker definition corresponds to. Therefore, OpenAL Soft
* requires these channel labels to be recognized:
*
* LF = Front left
* RF = Front right
* LS = Side left
* RS = Side right
* LB = Back left
* RB = Back right
* CE = Front center
* CB = Back center
*
* Additionally, surround51 will acknowledge back speakers for side
* channels, and surround51rear will acknowledge side speakers for
* back channels, to avoid issues with an ambdec expecting 5.1 to
* use the side channels when the device is configured for back,
* and vice-versa.
*/
if(conf->Speakers[i].Name == "LF")
ch = FrontLeft;
else if(conf->Speakers[i].Name == "RF")
ch = FrontRight;
else if(conf->Speakers[i].Name == "CE")
ch = FrontCenter;
else if(conf->Speakers[i].Name == "LS")
{
if(device->FmtChans == DevFmtX51Rear)
ch = BackLeft;
else
ch = SideLeft;
}
else if(conf->Speakers[i].Name == "RS")
{
if(device->FmtChans == DevFmtX51Rear)
ch = BackRight;
else
ch = SideRight;
}
else if(conf->Speakers[i].Name == "LB")
{
if(device->FmtChans == DevFmtX51)
ch = SideLeft;
else
ch = BackLeft;
}
else if(conf->Speakers[i].Name == "RB")
{
if(device->FmtChans == DevFmtX51)
ch = SideRight;
else
ch = BackRight;
}
else if(conf->Speakers[i].Name == "CB")
ch = BackCenter;
else
{
const char *name = conf->Speakers[i].Name.c_str();
unsigned int n;
char c;
if(sscanf(name, "AUX%u%c", &n, &c) == 1 && n < 16)
ch = static_cast<enum Channel>(Aux0+n);
else
{
ERR("AmbDec speaker label \"%s\" not recognized\n", name);
return false;
}
}
chidx = GetChannelIdxByName(&device->RealOut, ch);
if(chidx == -1)
{
ERR("Failed to lookup AmbDec speaker label %s\n",
conf->Speakers[i].Name.c_str());
return false;
}
speakermap[i] = chidx;
}
return true;
}
static const ChannelMap MonoCfg[1] = {
{ FrontCenter, { 1.0f } },
}, StereoCfg[2] = {
{ FrontLeft, { 5.00000000e-1f, 2.88675135e-1f, 0.0f, 5.52305643e-2f } },
{ FrontRight, { 5.00000000e-1f, -2.88675135e-1f, 0.0f, 5.52305643e-2f } },
}, QuadCfg[4] = {
{ BackLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, -2.04124145e-1f } },
{ FrontLeft, { 3.53553391e-1f, 2.04124145e-1f, 0.0f, 2.04124145e-1f } },
{ FrontRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, 2.04124145e-1f } },
{ BackRight, { 3.53553391e-1f, -2.04124145e-1f, 0.0f, -2.04124145e-1f } },
}, X51SideCfg[4] = {
{ SideLeft, { 3.33000782e-1f, 1.89084803e-1f, 0.0f, -2.00042375e-1f, -2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } },
{ FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 0.0f, 1.66295695e-1f, 7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } },
{ FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 0.0f, 1.66295695e-1f, -7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } },
{ SideRight, { 3.33000782e-1f, -1.89084803e-1f, 0.0f, -2.00042375e-1f, 2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } },
}, X51RearCfg[4] = {
{ BackLeft, { 3.33000782e-1f, 1.89084803e-1f, 0.0f, -2.00042375e-1f, -2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } },
{ FrontLeft, { 1.88542860e-1f, 1.27709292e-1f, 0.0f, 1.66295695e-1f, 7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } },
{ FrontRight, { 1.88542860e-1f, -1.27709292e-1f, 0.0f, 1.66295695e-1f, -7.30571517e-2f, 0.0f, 0.0f, 0.0f, 2.10901184e-2f } },
{ BackRight, { 3.33000782e-1f, -1.89084803e-1f, 0.0f, -2.00042375e-1f, 2.12307769e-2f, 0.0f, 0.0f, 0.0f, -1.14579885e-2f } },
}, X61Cfg[6] = {
{ SideLeft, { 2.04460341e-1f, 2.17177926e-1f, 0.0f, -4.39996780e-2f, -2.60790269e-2f, 0.0f, 0.0f, 0.0f, -6.87239792e-2f } },
{ FrontLeft, { 1.58923161e-1f, 9.21772680e-2f, 0.0f, 1.59658796e-1f, 6.66278083e-2f, 0.0f, 0.0f, 0.0f, 3.84686854e-2f } },
{ FrontRight, { 1.58923161e-1f, -9.21772680e-2f, 0.0f, 1.59658796e-1f, -6.66278083e-2f, 0.0f, 0.0f, 0.0f, 3.84686854e-2f } },
{ SideRight, { 2.04460341e-1f, -2.17177926e-1f, 0.0f, -4.39996780e-2f, 2.60790269e-2f, 0.0f, 0.0f, 0.0f, -6.87239792e-2f } },
{ BackCenter, { 2.50001688e-1f, 0.00000000e+0f, 0.0f, -2.50000094e-1f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, 6.05133395e-2f } },
}, X71Cfg[6] = {
{ BackLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, -1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
{ SideLeft, { 2.04124145e-1f, 2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
{ FrontLeft, { 2.04124145e-1f, 1.08880247e-1f, 0.0f, 1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
{ FrontRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, 1.88586120e-1f, -1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
{ SideRight, { 2.04124145e-1f, -2.17760495e-1f, 0.0f, 0.00000000e+0f, 0.00000000e+0f, 0.0f, 0.0f, 0.0f, -1.49071198e-1f, 3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
{ BackRight, { 2.04124145e-1f, -1.08880247e-1f, 0.0f, -1.88586120e-1f, 1.29099444e-1f, 0.0f, 0.0f, 0.0f, 7.45355993e-2f, -3.73460789e-2f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.00000000e+0f } },
};
static void InitNearFieldCtrl(ALCdevice *device, ALfloat ctrl_dist, ALsizei order,
const ALsizei *RESTRICT chans_per_order)
{
const char *devname = device->DeviceName.c_str();
ALsizei i;
if(GetConfigValueBool(devname, "decoder", "nfc", 1) && ctrl_dist > 0.0f)
{
/* NFC is only used when AvgSpeakerDist is greater than 0, and can only
* be used when rendering to an ambisonic buffer.
*/
device->AvgSpeakerDist = minf(ctrl_dist, 10.0f);
TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);
for(i = 0;i < order+1;i++)
device->NumChannelsPerOrder[i] = chans_per_order[i];
for(;i < MAX_AMBI_ORDER+1;i++)
device->NumChannelsPerOrder[i] = 0;
}
}
static void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf, const ALsizei speakermap[MAX_OUTPUT_CHANNELS])
{
const char *devname = device->DeviceName.c_str();
ALfloat maxdist = 0.0f;
size_t total = 0;
ALsizei i;
for(i = 0;i < conf->NumSpeakers;i++)
maxdist = maxf(maxdist, conf->Speakers[i].Distance);
if(GetConfigValueBool(devname, "decoder", "distance-comp", 1) && maxdist > 0.0f)
{
ALfloat srate = (ALfloat)device->Frequency;
for(i = 0;i < conf->NumSpeakers;i++)
{
ALsizei chan = speakermap[i];
ALfloat delay;
/* Distance compensation only delays in steps of the sample rate.
* This is a bit less accurate since the delay time falls to the
* nearest sample time, but it's far simpler as it doesn't have to
* deal with phase offsets. This means at 48khz, for instance, the
* distance delay will be in steps of about 7 millimeters.
*/
delay = floorf((maxdist-conf->Speakers[i].Distance) / SPEEDOFSOUNDMETRESPERSEC *
srate + 0.5f);
if(delay >= (ALfloat)MAX_DELAY_LENGTH)
ERR("Delay for speaker \"%s\" exceeds buffer length (%f >= %u)\n",
conf->Speakers[i].Name.c_str(), delay, MAX_DELAY_LENGTH);
device->ChannelDelay[chan].Length = (ALsizei)clampf(
delay, 0.0f, (ALfloat)(MAX_DELAY_LENGTH-1)
);
device->ChannelDelay[chan].Gain = conf->Speakers[i].Distance / maxdist;
TRACE("Channel %u \"%s\" distance compensation: %d samples, %f gain\n", chan,
conf->Speakers[i].Name.c_str(), device->ChannelDelay[chan].Length,
device->ChannelDelay[chan].Gain
);
/* Round up to the next 4th sample, so each channel buffer starts
* 16-byte aligned.
*/
total += RoundUp(device->ChannelDelay[chan].Length, 4);
}
}
if(total > 0)
{
device->ChannelDelay.resize(total);
device->ChannelDelay[0].Buffer = device->ChannelDelay.data();
for(i = 1;i < MAX_OUTPUT_CHANNELS;i++)
{
size_t len = RoundUp(device->ChannelDelay[i-1].Length, 4);
device->ChannelDelay[i].Buffer = device->ChannelDelay[i-1].Buffer + len;
}
}
}
static void InitPanning(ALCdevice *device)
{
const ChannelMap *chanmap = NULL;
ALsizei coeffcount = 0;
ALsizei count = 0;
ALsizei i, j;
switch(device->FmtChans)
{
case DevFmtMono:
count = COUNTOF(MonoCfg);
chanmap = MonoCfg;
coeffcount = 1;
break;
case DevFmtStereo:
count = COUNTOF(StereoCfg);
chanmap = StereoCfg;
coeffcount = 4;
break;
case DevFmtQuad:
count = COUNTOF(QuadCfg);
chanmap = QuadCfg;
coeffcount = 4;
break;
case DevFmtX51:
count = COUNTOF(X51SideCfg);
chanmap = X51SideCfg;
coeffcount = 9;
break;
case DevFmtX51Rear:
count = COUNTOF(X51RearCfg);
chanmap = X51RearCfg;
coeffcount = 9;
break;
case DevFmtX61:
count = COUNTOF(X61Cfg);
chanmap = X61Cfg;
coeffcount = 9;
break;
case DevFmtX71:
count = COUNTOF(X71Cfg);
chanmap = X71Cfg;
coeffcount = 16;
break;
case DevFmtAmbi3D:
break;
}
if(device->FmtChans == DevFmtAmbi3D)
{
const char *devname = device->DeviceName.c_str();
const ALsizei *acnmap = (device->mAmbiLayout == AmbiLayout::FuMa) ? FuMa2ACN : ACN2ACN;
const ALfloat *n3dscale = (device->mAmbiScale == AmbiNorm::FuMa) ? FuMa2N3DScale :
(device->mAmbiScale == AmbiNorm::SN3D) ? SN3D2N3DScale :
/*(device->mAmbiScale == AmbiNorm::N3D) ?*/ N3D2N3DScale;
ALfloat nfc_delay = 0.0f;
count = (device->mAmbiOrder == 3) ? 16 :
(device->mAmbiOrder == 2) ? 9 :
(device->mAmbiOrder == 1) ? 4 : 1;
for(i = 0;i < count;i++)
{
ALsizei acn = acnmap[i];
device->Dry.Ambi.Map[i].Scale = 1.0f/n3dscale[acn];
device->Dry.Ambi.Map[i].Index = acn;
}
device->Dry.CoeffCount = 0;
device->Dry.NumChannels = count;
if(device->mAmbiOrder < 2)
{
device->FOAOut.Ambi = device->Dry.Ambi;
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
device->FOAOut.NumChannels = 0;
}
else
{
ALfloat w_scale=1.0f, xyz_scale=1.0f;
/* FOA output is always ACN+N3D for higher-order ambisonic output.
* The upsampler expects this and will convert it for output.
*/
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
for(i = 0;i < 4;i++)
{
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
device->FOAOut.Ambi.Map[i].Index = i;
}
device->FOAOut.CoeffCount = 0;
device->FOAOut.NumChannels = 4;
if(device->mAmbiOrder >= 3)
{
w_scale = W_SCALE_3H3P;
xyz_scale = XYZ_SCALE_3H3P;
}
else
{
w_scale = W_SCALE_2H2P;
xyz_scale = XYZ_SCALE_2H2P;
}
device->AmbiUp->reset(device, w_scale, xyz_scale);
}
if(ConfigValueFloat(devname, "decoder", "nfc-ref-delay", &nfc_delay) && nfc_delay > 0.0f)
{
static const ALsizei chans_per_order[MAX_AMBI_ORDER+1] = {
1, 3, 5, 7
};
nfc_delay = clampf(nfc_delay, 0.001f, 1000.0f);
InitNearFieldCtrl(device, nfc_delay * SPEEDOFSOUNDMETRESPERSEC,
device->mAmbiOrder, chans_per_order);
}
}
else
{
ALfloat w_scale, xyz_scale;
SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs,
chanmap, count, &device->Dry.NumChannels);
device->Dry.CoeffCount = coeffcount;
w_scale = (device->Dry.CoeffCount > 9) ? W_SCALE_3H0P :
(device->Dry.CoeffCount > 4) ? W_SCALE_2H0P : 1.0f;
xyz_scale = (device->Dry.CoeffCount > 9) ? XYZ_SCALE_3H0P :
(device->Dry.CoeffCount > 4) ? XYZ_SCALE_2H0P : 1.0f;
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
for(i = 0;i < device->Dry.NumChannels;i++)
{
device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale;
for(j = 1;j < 4;j++)
device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale;
}
device->FOAOut.CoeffCount = 4;
device->FOAOut.NumChannels = 0;
}
device->RealOut.NumChannels = 0;
}
static void InitCustomPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS])
{
ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
const ALfloat *coeff_scale = N3D2N3DScale;
ALfloat w_scale = 1.0f;
ALfloat xyz_scale = 1.0f;
ALsizei i, j;
if(conf->FreqBands != 1)
ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
conf->XOverFreq);
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
{
if(conf->ChanMask > 0x1ff)
{
w_scale = W_SCALE_3H3P;
xyz_scale = XYZ_SCALE_3H3P;
}
else if(conf->ChanMask > 0xf)
{
w_scale = W_SCALE_2H2P;
xyz_scale = XYZ_SCALE_2H2P;
}
}
else
{
if(conf->ChanMask > 0x1ff)
{
w_scale = W_SCALE_3H0P;
xyz_scale = XYZ_SCALE_3H0P;
}
else if(conf->ChanMask > 0xf)
{
w_scale = W_SCALE_2H0P;
xyz_scale = XYZ_SCALE_2H0P;
}
}
if(conf->CoeffScale == AmbDecScale::SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf->CoeffScale == AmbDecScale::FuMa)
coeff_scale = FuMa2N3DScale;
for(i = 0;i < conf->NumSpeakers;i++)
{
ALsizei chan = speakermap[i];
ALfloat gain;
ALsizei k = 0;
for(j = 0;j < MAX_AMBI_COEFFS;j++)
chanmap[i].Config[j] = 0.0f;
chanmap[i].ChanName = device->RealOut.ChannelName[chan];
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0];
else if(j == 1) gain = conf->HFOrderGain[1];
else if(j == 4) gain = conf->HFOrderGain[2];
else if(j == 9) gain = conf->HFOrderGain[3];
if((conf->ChanMask&(1<<j)))
chanmap[i].Config[j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain;
}
}
SetChannelMap(device->RealOut.ChannelName, device->Dry.Ambi.Coeffs, chanmap,
conf->NumSpeakers, &device->Dry.NumChannels);
device->Dry.CoeffCount = (conf->ChanMask > 0x1ff) ? 16 :
(conf->ChanMask > 0xf) ? 9 : 4;
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
for(i = 0;i < device->Dry.NumChannels;i++)
{
device->FOAOut.Ambi.Coeffs[i][0] = device->Dry.Ambi.Coeffs[i][0] * w_scale;
for(j = 1;j < 4;j++)
device->FOAOut.Ambi.Coeffs[i][j] = device->Dry.Ambi.Coeffs[i][j] * xyz_scale;
}
device->FOAOut.CoeffCount = 4;
device->FOAOut.NumChannels = 0;
device->RealOut.NumChannels = 0;
InitDistanceComp(device, conf, speakermap);
}
static void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALsizei (&speakermap)[MAX_OUTPUT_CHANNELS])
{
static constexpr ALsizei chans_per_order2d[MAX_AMBI_ORDER+1] = { 1, 2, 2, 2 };
static constexpr ALsizei chans_per_order3d[MAX_AMBI_ORDER+1] = { 1, 3, 5, 7 };
ALfloat avg_dist;
ALsizei count;
ALsizei i;
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
{
count = (conf->ChanMask > 0x1ff) ? 16 :
(conf->ChanMask > 0xf) ? 9 : 4;
for(i = 0;i < count;i++)
{
device->Dry.Ambi.Map[i].Scale = 1.0f;
device->Dry.Ambi.Map[i].Index = i;
}
}
else
{
static const int map[MAX_AMBI2D_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 };
count = (conf->ChanMask > 0x1ff) ? 7 :
(conf->ChanMask > 0xf) ? 5 : 3;
for(i = 0;i < count;i++)
{
device->Dry.Ambi.Map[i].Scale = 1.0f;
device->Dry.Ambi.Map[i].Index = map[i];
}
}
device->Dry.CoeffCount = 0;
device->Dry.NumChannels = count;
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
(conf->FreqBands == 1) ? "single" : "dual",
(conf->ChanMask > 0xf) ? (conf->ChanMask > 0x1ff) ? "third" : "second" : "first",
(conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : ""
);
device->AmbiDecoder->reset(conf, count, device->Frequency, speakermap);
if(conf->ChanMask <= 0xf)
{
device->FOAOut.Ambi = device->Dry.Ambi;
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
device->FOAOut.NumChannels = 0;
}
else
{
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
{
count = 4;
for(i = 0;i < count;i++)
{
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
device->FOAOut.Ambi.Map[i].Index = i;
}
}
else
{
static const int map[3] = { 0, 1, 3 };
count = 3;
for(i = 0;i < count;i++)
{
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
device->FOAOut.Ambi.Map[i].Index = map[i];
}
}
device->FOAOut.CoeffCount = 0;
device->FOAOut.NumChannels = count;
}
device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder);
avg_dist = 0.0f;
for(i = 0;i < conf->NumSpeakers;i++)
avg_dist += conf->Speakers[i].Distance;
avg_dist /= (ALfloat)conf->NumSpeakers;
InitNearFieldCtrl(device, avg_dist,
(conf->ChanMask > 0x1ff) ? 3 : (conf->ChanMask > 0xf) ? 2 : 1,
(conf->ChanMask&AMBI_PERIPHONIC_MASK) ? chans_per_order3d : chans_per_order2d
);
InitDistanceComp(device, conf, speakermap);
}
static void InitHrtfPanning(ALCdevice *device)
{
/* NOTE: azimuth goes clockwise. */
static const struct AngularPoint AmbiPoints[] = {
{ DEG2RAD( 90.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 35.2643897f), DEG2RAD( 45.0f) },
{ DEG2RAD( 35.2643897f), DEG2RAD( 135.0f) },
{ DEG2RAD( 35.2643897f), DEG2RAD(-135.0f) },
{ DEG2RAD( 35.2643897f), DEG2RAD( -45.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 0.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 45.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 90.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 135.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( 180.0f) },
{ DEG2RAD( 0.0f), DEG2RAD(-135.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( -90.0f) },
{ DEG2RAD( 0.0f), DEG2RAD( -45.0f) },
{ DEG2RAD(-35.2643897f), DEG2RAD( 45.0f) },
{ DEG2RAD(-35.2643897f), DEG2RAD( 135.0f) },
{ DEG2RAD(-35.2643897f), DEG2RAD(-135.0f) },
{ DEG2RAD(-35.2643897f), DEG2RAD( -45.0f) },
{ DEG2RAD(-90.0f), DEG2RAD( 0.0f) },
};
static const ALfloat AmbiMatrixFOA[][MAX_AMBI_COEFFS] = {
{ 5.55555556e-02f, 0.00000000e+00f, 1.23717915e-01f, 0.00000000e+00f },
{ 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f },
{ 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f },
{ 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f },
{ 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f },
{ 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, 8.66025404e-02f },
{ 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f },
{ 5.55555556e-02f, -8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f },
{ 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f },
{ 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, -8.66025404e-02f },
{ 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f },
{ 5.55555556e-02f, 8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f },
{ 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f },
{ 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f },
{ 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f },
{ 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f },
{ 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f },
{ 5.55555556e-02f, 0.00000000e+00f, -1.23717915e-01f, 0.00000000e+00f },
}, AmbiMatrixHOA[][MAX_AMBI_COEFFS] = {
{ 5.55555556e-02f, 0.00000000e+00f, 1.23717915e-01f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f },
{ 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, -5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, -5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 5.00000000e-02f, 7.14285715e-02f, 5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, 8.66025404e-02f, 0.00000000e+00f, 1.29099445e-01f },
{ 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f, -6.83467648e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, -8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f, -1.29099445e-01f },
{ 5.55555556e-02f, -6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f, 6.83467648e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 0.00000000e+00f, 0.00000000e+00f, -8.66025404e-02f, 0.00000000e+00f, 1.29099445e-01f },
{ 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, -6.12372435e-02f, -6.83467648e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 8.66025404e-02f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f, -1.29099445e-01f },
{ 5.55555556e-02f, 6.12372435e-02f, 0.00000000e+00f, 6.12372435e-02f, 6.83467648e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, -5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, -5.00000000e-02f, -4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 5.00000000e-02f, -7.14285715e-02f, 5.00000000e-02f, 4.55645099e-02f, 0.00000000e+00f },
{ 5.55555556e-02f, 0.00000000e+00f, -1.23717915e-01f, 0.00000000e+00f, 0.00000000e+00f, 0.00000000e+00f },
};
static const ALfloat AmbiOrderHFGainFOA[MAX_AMBI_ORDER+1] = {
3.00000000e+00f, 1.73205081e+00f
}, AmbiOrderHFGainHOA[MAX_AMBI_ORDER+1] = {
2.40192231e+00f, 1.86052102e+00f, 9.60768923e-01f
};
static const ALsizei IndexMap[6] = { 0, 1, 2, 3, 4, 8 };
static const ALsizei ChansPerOrder[MAX_AMBI_ORDER+1] = { 1, 3, 2, 0 };
const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_COEFFS] = AmbiMatrixFOA;
const ALfloat *RESTRICT AmbiOrderHFGain = AmbiOrderHFGainFOA;
ALsizei count = 4;
ALsizei i;
static_assert(COUNTOF(AmbiPoints) == COUNTOF(AmbiMatrixFOA), "FOA Ambisonic HRTF mismatch");
static_assert(COUNTOF(AmbiPoints) == COUNTOF(AmbiMatrixHOA), "HOA Ambisonic HRTF mismatch");
if(device->AmbiUp)
{
AmbiMatrix = AmbiMatrixHOA;
AmbiOrderHFGain = AmbiOrderHFGainHOA;
count = COUNTOF(IndexMap);
}
device->mHrtfState.reset(
new (al_calloc(16, FAM_SIZE(DirectHrtfState, Chan, count))) DirectHrtfState{});
for(i = 0;i < count;i++)
{
device->Dry.Ambi.Map[i].Scale = 1.0f;
device->Dry.Ambi.Map[i].Index = IndexMap[i];
}
device->Dry.CoeffCount = 0;
device->Dry.NumChannels = count;
if(device->AmbiUp)
{
memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi));
for(i = 0;i < 4;i++)
{
device->FOAOut.Ambi.Map[i].Scale = 1.0f;
device->FOAOut.Ambi.Map[i].Index = i;
}
device->FOAOut.CoeffCount = 0;
device->FOAOut.NumChannels = 4;
device->AmbiUp->reset(device, AmbiOrderHFGainFOA[0] / AmbiOrderHFGain[0],
AmbiOrderHFGainFOA[1] / AmbiOrderHFGain[1]);
}
else
{
device->FOAOut.Ambi = device->Dry.Ambi;
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
device->FOAOut.NumChannels = 0;
}
device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder);
BuildBFormatHrtf(device->HrtfHandle,
device->mHrtfState.get(), device->Dry.NumChannels, AmbiPoints, AmbiMatrix,
COUNTOF(AmbiPoints), AmbiOrderHFGain
);
InitNearFieldCtrl(device, device->HrtfHandle->distance, device->AmbiUp ? 2 : 1,
ChansPerOrder);
}
static void InitUhjPanning(ALCdevice *device)
{
ALsizei count = 3;
ALsizei i;
for(i = 0;i < count;i++)
{
ALsizei acn = FuMa2ACN[i];
device->Dry.Ambi.Map[i].Scale = 1.0f/FuMa2N3DScale[acn];
device->Dry.Ambi.Map[i].Index = acn;
}
device->Dry.CoeffCount = 0;
device->Dry.NumChannels = count;
device->FOAOut.Ambi = device->Dry.Ambi;
device->FOAOut.CoeffCount = device->Dry.CoeffCount;
device->FOAOut.NumChannels = 0;
device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans, device->mAmbiOrder);
}
void aluInitRenderer(ALCdevice *device, ALint hrtf_id, enum HrtfRequestMode hrtf_appreq, enum HrtfRequestMode hrtf_userreq)
{
/* Hold the HRTF the device last used, in case it's used again. */
struct Hrtf *old_hrtf = device->HrtfHandle;
device->mHrtfState = nullptr;
device->HrtfHandle = nullptr;
device->HrtfName.clear();
device->Render_Mode = NormalRender;
device->Dry.Ambi = AmbiConfig{};
device->Dry.CoeffCount = 0;
device->Dry.NumChannels = 0;
std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0);
device->AvgSpeakerDist = 0.0f;
device->ChannelDelay.clear();
device->Stablizer = nullptr;
if(device->FmtChans != DevFmtStereo)
{
ALsizei speakermap[MAX_OUTPUT_CHANNELS];
const char *devname, *layout = NULL;
AmbDecConf conf, *pconf = NULL;
if(old_hrtf)
Hrtf_DecRef(old_hrtf);
old_hrtf = NULL;
if(hrtf_appreq == Hrtf_Enable)
device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
devname = device->DeviceName.c_str();
switch(device->FmtChans)
{
case DevFmtQuad: layout = "quad"; break;
case DevFmtX51: /* fall-through */
case DevFmtX51Rear: layout = "surround51"; break;
case DevFmtX61: layout = "surround61"; break;
case DevFmtX71: layout = "surround71"; break;
/* Mono, Stereo, and Ambisonics output don't use custom decoders. */
case DevFmtMono:
case DevFmtStereo:
case DevFmtAmbi3D:
break;
}
if(layout)
{
const char *fname;
if(ConfigValueStr(devname, "decoder", layout, &fname))
{
if(!conf.load(fname))
ERR("Failed to load layout file %s\n", fname);
else
{
if(conf.ChanMask > 0xffff)
ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask);
else
{
if(MakeSpeakerMap(device, &conf, speakermap))
pconf = &conf;
}
}
}
}
if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0))
{
device->AmbiUp = nullptr;
if(!device->AmbiDecoder)
device->AmbiDecoder.reset(new BFormatDec{});
}
else
{
device->AmbiDecoder = nullptr;
if(device->FmtChans != DevFmtAmbi3D || device->mAmbiOrder < 2)
device->AmbiUp = nullptr;
else if(!device->AmbiUp)
device->AmbiUp.reset(new AmbiUpsampler{});
}
if(!pconf)
InitPanning(device);
else if(device->AmbiDecoder)
InitHQPanning(device, pconf, speakermap);
else
InitCustomPanning(device, pconf, speakermap);
/* Enable the stablizer only for formats that have front-left, front-
* right, and front-center outputs.
*/
switch(device->FmtChans)
{
case DevFmtX51:
case DevFmtX51Rear:
case DevFmtX61:
case DevFmtX71:
if(GetConfigValueBool(devname, NULL, "front-stablizer", 0))
{
/* Initialize band-splitting filters for the front-left and
* front-right channels, with a crossover at 5khz (could be
* higher).
*/
ALfloat scale = (ALfloat)(5000.0 / device->Frequency);
std::unique_ptr<FrontStablizer> stablizer{new FrontStablizer{}};
stablizer->LFilter.init(scale);
stablizer->RFilter = stablizer->LFilter;
/* Initialize all-pass filters for all other channels. */
stablizer->APFilter[0].init(scale);
std::fill(std::begin(stablizer->APFilter)+1, std::end(stablizer->APFilter),
stablizer->APFilter[0]);
device->Stablizer = std::move(stablizer);
}
break;
case DevFmtMono:
case DevFmtStereo:
case DevFmtQuad:
case DevFmtAmbi3D:
break;
}
TRACE("Front stablizer %s\n", device->Stablizer ? "enabled" : "disabled");
return;
}
device->AmbiDecoder = nullptr;
bool headphones{device->IsHeadphones != AL_FALSE};
if(device->Type != Loopback)
{
const char *mode;
if(ConfigValueStr(device->DeviceName.c_str(), NULL, "stereo-mode", &mode))
{
if(strcasecmp(mode, "headphones") == 0)
headphones = true;
else if(strcasecmp(mode, "speakers") == 0)
headphones = false;
else if(strcasecmp(mode, "auto") != 0)
ERR("Unexpected stereo-mode: %s\n", mode);
}
}
if(hrtf_userreq == Hrtf_Default)
{
bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
(hrtf_appreq == Hrtf_Enable);
if(!usehrtf) goto no_hrtf;
device->HrtfStatus = ALC_HRTF_ENABLED_SOFT;
if(headphones && hrtf_appreq != Hrtf_Disable)
device->HrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
}
else
{
if(hrtf_userreq != Hrtf_Enable)
{
if(hrtf_appreq == Hrtf_Enable)
device->HrtfStatus = ALC_HRTF_DENIED_SOFT;
goto no_hrtf;
}
device->HrtfStatus = ALC_HRTF_REQUIRED_SOFT;
}
if(device->HrtfList.empty())
device->HrtfList = EnumerateHrtf(device->DeviceName.c_str());
if(hrtf_id >= 0 && (size_t)hrtf_id < device->HrtfList.size())
{
const EnumeratedHrtf &entry = device->HrtfList[hrtf_id];
struct Hrtf *hrtf = GetLoadedHrtf(entry.hrtf);
if(hrtf && hrtf->sampleRate == device->Frequency)
{
device->HrtfHandle = hrtf;
device->HrtfName = entry.name;
}
else if(hrtf)
Hrtf_DecRef(hrtf);
}
if(!device->HrtfHandle)
{
auto find_hrtf = [device](const EnumeratedHrtf &entry) -> bool
{
struct Hrtf *hrtf = GetLoadedHrtf(entry.hrtf);
if(!hrtf) return false;
if(hrtf->sampleRate != device->Frequency)
{
Hrtf_DecRef(hrtf);
return false;
}
device->HrtfHandle = hrtf;
device->HrtfName = entry.name;
return true;
};
std::find_if(device->HrtfList.cbegin(), device->HrtfList.cend(), find_hrtf);
}
if(device->HrtfHandle)
{
if(old_hrtf)
Hrtf_DecRef(old_hrtf);
old_hrtf = NULL;
device->Render_Mode = HrtfRender;
const char *mode;
if(ConfigValueStr(device->DeviceName.c_str(), NULL, "hrtf-mode", &mode))
{
if(strcasecmp(mode, "full") == 0)
device->Render_Mode = HrtfRender;
else if(strcasecmp(mode, "basic") == 0)
device->Render_Mode = NormalRender;
else
ERR("Unexpected hrtf-mode: %s\n", mode);
}
if(device->Render_Mode == HrtfRender)
{
/* Don't bother with HOA when using full HRTF rendering. Nothing
* needs it, and it eases the CPU/memory load.
*/
device->AmbiUp = nullptr;
}
else
{
if(!device->AmbiUp)
device->AmbiUp.reset(new AmbiUpsampler{});
}
TRACE("%s HRTF rendering enabled, using \"%s\"\n",
((device->Render_Mode == HrtfRender) ? "Full" : "Basic"), device->HrtfName.c_str()
);
InitHrtfPanning(device);
return;
}
device->HrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
no_hrtf:
if(old_hrtf)
Hrtf_DecRef(old_hrtf);
old_hrtf = nullptr;
TRACE("HRTF disabled\n");
device->Render_Mode = StereoPair;
device->AmbiUp = nullptr;
int bs2blevel{((headphones && hrtf_appreq != Hrtf_Disable) ||
(hrtf_appreq == Hrtf_Enable)) ? 5 : 0};
if(device->Type != Loopback)
ConfigValueInt(device->DeviceName.c_str(), NULL, "cf_level", &bs2blevel);
if(bs2blevel > 0 && bs2blevel <= 6)
{
device->Bs2b.reset(new bs2b{});
bs2b_set_params(device->Bs2b.get(), bs2blevel, device->Frequency);
TRACE("BS2B enabled\n");
InitPanning(device);
return;
}
TRACE("BS2B disabled\n");
const char *mode;
if(ConfigValueStr(device->DeviceName.c_str(), NULL, "stereo-encoding", &mode))
{
if(strcasecmp(mode, "uhj") == 0)
device->Render_Mode = NormalRender;
else if(strcasecmp(mode, "panpot") != 0)
ERR("Unexpected stereo-encoding: %s\n", mode);
}
if(device->Render_Mode == NormalRender)
{
device->Uhj_Encoder.reset(new Uhj2Encoder{});
TRACE("UHJ enabled\n");
InitUhjPanning(device);
return;
}
TRACE("UHJ disabled\n");
InitPanning(device);
}
void aluInitEffectPanning(ALeffectslot *slot)
{
ALsizei i;
memset(slot->ChanMap, 0, sizeof(slot->ChanMap));
slot->NumChannels = 0;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
slot->ChanMap[i].Scale = 1.0f;
slot->ChanMap[i].Index = i;
}
slot->NumChannels = i;
}