533 lines
18 KiB
C++
533 lines
18 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2013 by Mike Gorchak
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <cstdlib>
|
|
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
|
|
#include "alMain.h"
|
|
#include "alcontext.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alError.h"
|
|
#include "alu.h"
|
|
#include "filters/biquad.h"
|
|
#include "vector.h"
|
|
|
|
|
|
namespace {
|
|
|
|
static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch");
|
|
static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch");
|
|
|
|
enum class WaveForm {
|
|
Sinusoid,
|
|
Triangle
|
|
};
|
|
|
|
void GetTriangleDelays(ALint *delays, ALsizei offset, ALsizei lfo_range, ALfloat lfo_scale,
|
|
ALfloat depth, ALsizei delay, ALsizei todo)
|
|
{
|
|
std::generate_n<ALint*RESTRICT>(delays, todo,
|
|
[&offset,lfo_range,lfo_scale,depth,delay]() -> ALint
|
|
{
|
|
offset = (offset+1)%lfo_range;
|
|
return fastf2i((1.0f - std::abs(2.0f - lfo_scale*offset)) * depth) + delay;
|
|
}
|
|
);
|
|
}
|
|
|
|
void GetSinusoidDelays(ALint *delays, ALsizei offset, ALsizei lfo_range, ALfloat lfo_scale,
|
|
ALfloat depth, ALsizei delay, ALsizei todo)
|
|
{
|
|
std::generate_n<ALint*RESTRICT>(delays, todo,
|
|
[&offset,lfo_range,lfo_scale,depth,delay]() -> ALint
|
|
{
|
|
offset = (offset+1)%lfo_range;
|
|
return fastf2i(std::sin(lfo_scale*offset) * depth) + delay;
|
|
}
|
|
);
|
|
}
|
|
|
|
struct ChorusState final : public EffectState {
|
|
al::vector<ALfloat,16> mSampleBuffer;
|
|
ALsizei mOffset{0};
|
|
|
|
ALsizei mLfoOffset{0};
|
|
ALsizei mLfoRange{1};
|
|
ALfloat mLfoScale{0.0f};
|
|
ALint mLfoDisp{0};
|
|
|
|
/* Gains for left and right sides */
|
|
struct {
|
|
ALfloat Current[MAX_OUTPUT_CHANNELS]{};
|
|
ALfloat Target[MAX_OUTPUT_CHANNELS]{};
|
|
} mGains[2];
|
|
|
|
/* effect parameters */
|
|
WaveForm mWaveform{};
|
|
ALint mDelay{0};
|
|
ALfloat mDepth{0.0f};
|
|
ALfloat mFeedback{0.0f};
|
|
|
|
|
|
ALboolean deviceUpdate(const ALCdevice *device) override;
|
|
void update(const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props, const EffectTarget target) override;
|
|
void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
|
|
|
|
DEF_NEWDEL(ChorusState)
|
|
};
|
|
|
|
ALboolean ChorusState::deviceUpdate(const ALCdevice *Device)
|
|
{
|
|
const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY);
|
|
size_t maxlen;
|
|
|
|
maxlen = NextPowerOf2(float2int(max_delay*2.0f*Device->Frequency) + 1u);
|
|
if(maxlen <= 0) return AL_FALSE;
|
|
|
|
if(maxlen != mSampleBuffer.size())
|
|
{
|
|
mSampleBuffer.resize(maxlen);
|
|
mSampleBuffer.shrink_to_fit();
|
|
}
|
|
|
|
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
|
|
for(auto &e : mGains)
|
|
{
|
|
std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
|
|
std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
|
|
}
|
|
|
|
return AL_TRUE;
|
|
}
|
|
|
|
void ChorusState::update(const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props, const EffectTarget target)
|
|
{
|
|
static constexpr ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS;
|
|
|
|
switch(props->Chorus.Waveform)
|
|
{
|
|
case AL_CHORUS_WAVEFORM_TRIANGLE:
|
|
mWaveform = WaveForm::Triangle;
|
|
break;
|
|
case AL_CHORUS_WAVEFORM_SINUSOID:
|
|
mWaveform = WaveForm::Sinusoid;
|
|
break;
|
|
}
|
|
|
|
/* The LFO depth is scaled to be relative to the sample delay. Clamp the
|
|
* delay and depth to allow enough padding for resampling.
|
|
*/
|
|
const ALCdevice *device{Context->Device};
|
|
auto frequency = static_cast<ALfloat>(device->Frequency);
|
|
mDelay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay);
|
|
mDepth = minf(props->Chorus.Depth * mDelay, static_cast<ALfloat>(mDelay - mindelay));
|
|
|
|
mFeedback = props->Chorus.Feedback;
|
|
|
|
/* Gains for left and right sides */
|
|
ALfloat coeffs[2][MAX_AMBI_CHANNELS];
|
|
CalcAngleCoeffs(al::MathDefs<float>::Pi()*-0.5f, 0.0f, 0.0f, coeffs[0]);
|
|
CalcAngleCoeffs(al::MathDefs<float>::Pi()* 0.5f, 0.0f, 0.0f, coeffs[1]);
|
|
|
|
mOutBuffer = target.Main->Buffer;
|
|
mOutChannels = target.Main->NumChannels;
|
|
ComputePanGains(target.Main, coeffs[0], Slot->Params.Gain, mGains[0].Target);
|
|
ComputePanGains(target.Main, coeffs[1], Slot->Params.Gain, mGains[1].Target);
|
|
|
|
ALfloat rate{props->Chorus.Rate};
|
|
if(!(rate > 0.0f))
|
|
{
|
|
mLfoOffset = 0;
|
|
mLfoRange = 1;
|
|
mLfoScale = 0.0f;
|
|
mLfoDisp = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Calculate LFO coefficient (number of samples per cycle). Limit the
|
|
* max range to avoid overflow when calculating the displacement.
|
|
*/
|
|
ALsizei lfo_range = float2int(minf(frequency/rate + 0.5f, static_cast<ALfloat>(INT_MAX/360 - 180)));
|
|
|
|
mLfoOffset = float2int(static_cast<ALfloat>(mLfoOffset)/mLfoRange*lfo_range + 0.5f) % lfo_range;
|
|
mLfoRange = lfo_range;
|
|
switch(mWaveform)
|
|
{
|
|
case WaveForm::Triangle:
|
|
mLfoScale = 4.0f / mLfoRange;
|
|
break;
|
|
case WaveForm::Sinusoid:
|
|
mLfoScale = al::MathDefs<float>::Tau() / mLfoRange;
|
|
break;
|
|
}
|
|
|
|
/* Calculate lfo phase displacement */
|
|
ALint phase{props->Chorus.Phase};
|
|
if(phase < 0) phase = 360 + phase;
|
|
mLfoDisp = (mLfoRange*phase + 180) / 360;
|
|
}
|
|
}
|
|
|
|
void ChorusState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei /*numInput*/, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput)
|
|
{
|
|
const auto bufmask = static_cast<ALsizei>(mSampleBuffer.size()-1);
|
|
const ALfloat feedback{mFeedback};
|
|
const ALsizei avgdelay{(mDelay + (FRACTIONONE>>1)) >> FRACTIONBITS};
|
|
ALfloat *RESTRICT delaybuf{mSampleBuffer.data()};
|
|
ALsizei offset{mOffset};
|
|
ALsizei i, c;
|
|
ALsizei base;
|
|
|
|
for(base = 0;base < samplesToDo;)
|
|
{
|
|
const ALsizei todo = mini(256, samplesToDo-base);
|
|
ALint moddelays[2][256];
|
|
alignas(16) ALfloat temps[2][256];
|
|
|
|
if(mWaveform == WaveForm::Sinusoid)
|
|
{
|
|
GetSinusoidDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay,
|
|
todo);
|
|
GetSinusoidDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale,
|
|
mDepth, mDelay, todo);
|
|
}
|
|
else /*if(mWaveform == WaveForm::Triangle)*/
|
|
{
|
|
GetTriangleDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay,
|
|
todo);
|
|
GetTriangleDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale,
|
|
mDepth, mDelay, todo);
|
|
}
|
|
mLfoOffset = (mLfoOffset+todo) % mLfoRange;
|
|
|
|
for(i = 0;i < todo;i++)
|
|
{
|
|
// Feed the buffer's input first (necessary for delays < 1).
|
|
delaybuf[offset&bufmask] = samplesIn[0][base+i];
|
|
|
|
// Tap for the left output.
|
|
ALint delay{offset - (moddelays[0][i]>>FRACTIONBITS)};
|
|
ALfloat mu{(moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE)};
|
|
temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
|
|
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
|
|
mu);
|
|
|
|
// Tap for the right output.
|
|
delay = offset - (moddelays[1][i]>>FRACTIONBITS);
|
|
mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
|
temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
|
|
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
|
|
mu);
|
|
|
|
// Accumulate feedback from the average delay of the taps.
|
|
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
|
|
offset++;
|
|
}
|
|
|
|
for(c = 0;c < 2;c++)
|
|
MixSamples(temps[c], numOutput, samplesOut, mGains[c].Current, mGains[c].Target,
|
|
samplesToDo-base, base, todo);
|
|
|
|
base += todo;
|
|
}
|
|
|
|
mOffset = offset;
|
|
}
|
|
|
|
|
|
struct ChorusStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override;
|
|
ALeffectProps getDefaultProps() const noexcept override;
|
|
};
|
|
|
|
EffectState *ChorusStateFactory::create()
|
|
{ return new ChorusState{}; }
|
|
|
|
ALeffectProps ChorusStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
ALeffectProps props{};
|
|
props.Chorus.Waveform = AL_CHORUS_DEFAULT_WAVEFORM;
|
|
props.Chorus.Phase = AL_CHORUS_DEFAULT_PHASE;
|
|
props.Chorus.Rate = AL_CHORUS_DEFAULT_RATE;
|
|
props.Chorus.Depth = AL_CHORUS_DEFAULT_DEPTH;
|
|
props.Chorus.Feedback = AL_CHORUS_DEFAULT_FEEDBACK;
|
|
props.Chorus.Delay = AL_CHORUS_DEFAULT_DELAY;
|
|
return props;
|
|
}
|
|
|
|
/* Flanger is basically a chorus with a really short delay. They can both use
|
|
* the same processing functions, so piggyback flanger on the chorus functions.
|
|
*/
|
|
struct FlangerStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override;
|
|
ALeffectProps getDefaultProps() const noexcept override;
|
|
};
|
|
|
|
EffectState *FlangerStateFactory::create()
|
|
{ return new ChorusState{}; }
|
|
|
|
ALeffectProps FlangerStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
ALeffectProps props{};
|
|
props.Chorus.Waveform = AL_FLANGER_DEFAULT_WAVEFORM;
|
|
props.Chorus.Phase = AL_FLANGER_DEFAULT_PHASE;
|
|
props.Chorus.Rate = AL_FLANGER_DEFAULT_RATE;
|
|
props.Chorus.Depth = AL_FLANGER_DEFAULT_DEPTH;
|
|
props.Chorus.Feedback = AL_FLANGER_DEFAULT_FEEDBACK;
|
|
props.Chorus.Delay = AL_FLANGER_DEFAULT_DELAY;
|
|
return props;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *ChorusStateFactory_getFactory()
|
|
{
|
|
static ChorusStateFactory ChorusFactory{};
|
|
return &ChorusFactory;
|
|
}
|
|
|
|
EffectStateFactory *FlangerStateFactory_getFactory()
|
|
{
|
|
static FlangerStateFactory FlangerFactory{};
|
|
return &FlangerFactory;
|
|
}
|
|
|
|
|
|
void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_WAVEFORM:
|
|
if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid chorus waveform");
|
|
props->Chorus.Waveform = val;
|
|
break;
|
|
|
|
case AL_CHORUS_PHASE:
|
|
if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus phase out of range");
|
|
props->Chorus.Phase = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
|
|
{ ALchorus_setParami(effect, context, param, vals[0]); }
|
|
void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_RATE:
|
|
if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus rate out of range");
|
|
props->Chorus.Rate = val;
|
|
break;
|
|
|
|
case AL_CHORUS_DEPTH:
|
|
if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus depth out of range");
|
|
props->Chorus.Depth = val;
|
|
break;
|
|
|
|
case AL_CHORUS_FEEDBACK:
|
|
if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus feedback out of range");
|
|
props->Chorus.Feedback = val;
|
|
break;
|
|
|
|
case AL_CHORUS_DELAY:
|
|
if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus delay out of range");
|
|
props->Chorus.Delay = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
|
|
{ ALchorus_setParamf(effect, context, param, vals[0]); }
|
|
|
|
void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
|
|
{
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_WAVEFORM:
|
|
*val = props->Chorus.Waveform;
|
|
break;
|
|
|
|
case AL_CHORUS_PHASE:
|
|
*val = props->Chorus.Phase;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
|
|
{ ALchorus_getParami(effect, context, param, vals); }
|
|
void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
|
|
{
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_RATE:
|
|
*val = props->Chorus.Rate;
|
|
break;
|
|
|
|
case AL_CHORUS_DEPTH:
|
|
*val = props->Chorus.Depth;
|
|
break;
|
|
|
|
case AL_CHORUS_FEEDBACK:
|
|
*val = props->Chorus.Feedback;
|
|
break;
|
|
|
|
case AL_CHORUS_DELAY:
|
|
*val = props->Chorus.Delay;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
|
|
{ ALchorus_getParamf(effect, context, param, vals); }
|
|
|
|
DEFINE_ALEFFECT_VTABLE(ALchorus);
|
|
|
|
|
|
void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_WAVEFORM:
|
|
if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid flanger waveform");
|
|
props->Chorus.Waveform = val;
|
|
break;
|
|
|
|
case AL_FLANGER_PHASE:
|
|
if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger phase out of range");
|
|
props->Chorus.Phase = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
|
|
{ ALflanger_setParami(effect, context, param, vals[0]); }
|
|
void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_RATE:
|
|
if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger rate out of range");
|
|
props->Chorus.Rate = val;
|
|
break;
|
|
|
|
case AL_FLANGER_DEPTH:
|
|
if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger depth out of range");
|
|
props->Chorus.Depth = val;
|
|
break;
|
|
|
|
case AL_FLANGER_FEEDBACK:
|
|
if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger feedback out of range");
|
|
props->Chorus.Feedback = val;
|
|
break;
|
|
|
|
case AL_FLANGER_DELAY:
|
|
if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger delay out of range");
|
|
props->Chorus.Delay = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
|
|
{ ALflanger_setParamf(effect, context, param, vals[0]); }
|
|
|
|
void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
|
|
{
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_WAVEFORM:
|
|
*val = props->Chorus.Waveform;
|
|
break;
|
|
|
|
case AL_FLANGER_PHASE:
|
|
*val = props->Chorus.Phase;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
|
|
{ ALflanger_getParami(effect, context, param, vals); }
|
|
void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
|
|
{
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_RATE:
|
|
*val = props->Chorus.Rate;
|
|
break;
|
|
|
|
case AL_FLANGER_DEPTH:
|
|
*val = props->Chorus.Depth;
|
|
break;
|
|
|
|
case AL_FLANGER_FEEDBACK:
|
|
*val = props->Chorus.Feedback;
|
|
break;
|
|
|
|
case AL_FLANGER_DELAY:
|
|
*val = props->Chorus.Delay;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
|
|
{ ALflanger_getParamf(effect, context, param, vals); }
|
|
|
|
DEFINE_ALEFFECT_VTABLE(ALflanger);
|