openal-soft/Alc/effects/fshifter.c
2018-05-24 00:16:50 -07:00

330 lines
11 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "filters/defs.h"
#include "alcomplex.h"
#define HIL_SIZE 1024
#define OVERSAMP (1<<2)
#define HIL_STEP (HIL_SIZE / OVERSAMP)
#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))
typedef struct ALfshifterState {
DERIVE_FROM_TYPE(ALeffectState);
/* Effect parameters */
ALsizei count;
ALsizei PhaseStep;
ALsizei Phase;
ALdouble ld_sign;
/*Effects buffers*/
ALfloat InFIFO[HIL_SIZE];
ALcomplex OutFIFO[HIL_SIZE];
ALcomplex OutputAccum[HIL_SIZE];
ALcomplex Analytic[HIL_SIZE];
ALcomplex Outdata[BUFFERSIZE];
alignas(16) ALfloat BufferOut[BUFFERSIZE];
/* Effect gains for each output channel */
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
} ALfshifterState;
static ALvoid ALfshifterState_Destruct(ALfshifterState *state);
static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *device);
static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALfshifterState)
DEFINE_ALEFFECTSTATE_VTABLE(ALfshifterState);
/* Define a Hann window, used to filter the HIL input and output. */
alignas(16) static ALdouble HannWindow[HIL_SIZE];
static void InitHannWindow(void)
{
ALsizei i;
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
for(i = 0;i < HIL_SIZE>>1;i++)
{
ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(HIL_SIZE-1));
HannWindow[i] = HannWindow[HIL_SIZE-1-i] = val * val;
}
}
static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT;
static void ALfshifterState_Construct(ALfshifterState *state)
{
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALfshifterState, ALeffectState, state);
alcall_once(&HannInitOnce, InitHannWindow);
}
static ALvoid ALfshifterState_Destruct(ALfshifterState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *UNUSED(device))
{
/* (Re-)initializing parameters and clear the buffers. */
state->count = FIFO_LATENCY;
state->PhaseStep = 0;
state->Phase = 0;
state->ld_sign = 1.0;
memset(state->InFIFO, 0, sizeof(state->InFIFO));
memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
memset(state->Analytic, 0, sizeof(state->Analytic));
memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
memset(state->TargetGains, 0, sizeof(state->TargetGains));
return AL_TRUE;
}
static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
{
const ALCdevice *device = context->Device;
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat step;
step = props->Fshifter.Frequency / (ALfloat)device->Frequency;
state->PhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE);
switch(props->Fshifter.LeftDirection)
{
case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN:
state->ld_sign = -1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_UP:
state->ld_sign = 1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_OFF:
state->Phase = 0;
state->PhaseStep = 0;
break;
}
CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs);
ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains);
}
static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
static const ALcomplex complex_zero = { 0.0, 0.0 };
ALfloat *restrict BufferOut = state->BufferOut;
ALsizei j, k, base;
for(base = 0;base < SamplesToDo;)
{
ALsizei todo = mini(HIL_SIZE-state->count, SamplesToDo-base);
ASSUME(todo > 0);
/* Fill FIFO buffer with samples data */
k = state->count;
for(j = 0;j < todo;j++,k++)
{
state->InFIFO[k] = SamplesIn[0][base+j];
state->Outdata[base+j] = state->OutFIFO[k-FIFO_LATENCY];
}
state->count += todo;
base += todo;
/* Check whether FIFO buffer is filled */
if(state->count < HIL_SIZE) continue;
state->count = FIFO_LATENCY;
/* Real signal windowing and store in Analytic buffer */
for(k = 0;k < HIL_SIZE;k++)
{
state->Analytic[k].Real = state->InFIFO[k] * HannWindow[k];
state->Analytic[k].Imag = 0.0;
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
complex_hilbert(state->Analytic, HIL_SIZE);
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
{
state->OutputAccum[k].Real += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Real;
state->OutputAccum[k].Imag += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Imag;
}
/* Shift accumulator, input & output FIFO */
for(k = 0;k < HIL_STEP;k++) state->OutFIFO[k] = state->OutputAccum[k];
for(j = 0;k < HIL_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k];
for(;j < HIL_SIZE;j++) state->OutputAccum[j] = complex_zero;
for(k = 0;k < FIFO_LATENCY;k++)
state->InFIFO[k] = state->InFIFO[k+HIL_STEP];
}
/* Process frequency shifter using the analytic signal obtained. */
for(k = 0;k < SamplesToDo;k++)
{
ALdouble phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
BufferOut[k] = (ALfloat)(state->Outdata[k].Real*cos(phase) +
state->Outdata[k].Imag*sin(phase)*state->ld_sign);
state->Phase += state->PhaseStep;
state->Phase &= FRACTIONMASK;
}
/* Now, mix the processed sound data to the output. */
MixSamples(BufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains,
maxi(SamplesToDo, 512), 0, SamplesToDo);
}
typedef struct FshifterStateFactory {
DERIVE_FROM_TYPE(EffectStateFactory);
} FshifterStateFactory;
static ALeffectState *FshifterStateFactory_create(FshifterStateFactory *UNUSED(factory))
{
ALfshifterState *state;
NEW_OBJ0(state, ALfshifterState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_EFFECTSTATEFACTORY_VTABLE(FshifterStateFactory);
EffectStateFactory *FshifterStateFactory_getFactory(void)
{
static FshifterStateFactory FshifterFactory = { { GET_VTABLE2(FshifterStateFactory, EffectStateFactory) } };
return STATIC_CAST(EffectStateFactory, &FshifterFactory);
}
void ALfshifter_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range");
props->Fshifter.Frequency = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void ALfshifter_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALfshifter_setParamf(effect, context, param, vals[0]);
}
void ALfshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range");
props->Fshifter.LeftDirection = val;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range");
props->Fshifter.RightDirection = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void ALfshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALfshifter_setParami(effect, context, param, vals[0]);
}
void ALfshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
*val = props->Fshifter.LeftDirection;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
*val = props->Fshifter.RightDirection;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void ALfshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALfshifter_getParami(effect, context, param, vals);
}
void ALfshifter_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
*val = props->Fshifter.Frequency;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void ALfshifter_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALfshifter_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALfshifter);