330 lines
11 KiB
C
330 lines
11 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2018 by Raul Herraiz.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alError.h"
|
|
#include "alu.h"
|
|
#include "filters/defs.h"
|
|
|
|
#include "alcomplex.h"
|
|
|
|
#define HIL_SIZE 1024
|
|
#define OVERSAMP (1<<2)
|
|
|
|
#define HIL_STEP (HIL_SIZE / OVERSAMP)
|
|
#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))
|
|
|
|
|
|
typedef struct ALfshifterState {
|
|
DERIVE_FROM_TYPE(ALeffectState);
|
|
|
|
/* Effect parameters */
|
|
ALsizei count;
|
|
ALsizei PhaseStep;
|
|
ALsizei Phase;
|
|
ALdouble ld_sign;
|
|
|
|
/*Effects buffers*/
|
|
ALfloat InFIFO[HIL_SIZE];
|
|
ALcomplex OutFIFO[HIL_SIZE];
|
|
ALcomplex OutputAccum[HIL_SIZE];
|
|
ALcomplex Analytic[HIL_SIZE];
|
|
ALcomplex Outdata[BUFFERSIZE];
|
|
|
|
alignas(16) ALfloat BufferOut[BUFFERSIZE];
|
|
|
|
/* Effect gains for each output channel */
|
|
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
|
|
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
|
|
} ALfshifterState;
|
|
|
|
static ALvoid ALfshifterState_Destruct(ALfshifterState *state);
|
|
static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *device);
|
|
static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
|
|
static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
|
|
DECLARE_DEFAULT_ALLOCATORS(ALfshifterState)
|
|
|
|
DEFINE_ALEFFECTSTATE_VTABLE(ALfshifterState);
|
|
|
|
/* Define a Hann window, used to filter the HIL input and output. */
|
|
alignas(16) static ALdouble HannWindow[HIL_SIZE];
|
|
|
|
static void InitHannWindow(void)
|
|
{
|
|
ALsizei i;
|
|
|
|
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
|
|
for(i = 0;i < HIL_SIZE>>1;i++)
|
|
{
|
|
ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(HIL_SIZE-1));
|
|
HannWindow[i] = HannWindow[HIL_SIZE-1-i] = val * val;
|
|
}
|
|
}
|
|
|
|
static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT;
|
|
|
|
static void ALfshifterState_Construct(ALfshifterState *state)
|
|
{
|
|
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
|
|
SET_VTABLE2(ALfshifterState, ALeffectState, state);
|
|
|
|
alcall_once(&HannInitOnce, InitHannWindow);
|
|
}
|
|
|
|
static ALvoid ALfshifterState_Destruct(ALfshifterState *state)
|
|
{
|
|
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
|
|
}
|
|
|
|
static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *UNUSED(device))
|
|
{
|
|
/* (Re-)initializing parameters and clear the buffers. */
|
|
state->count = FIFO_LATENCY;
|
|
state->PhaseStep = 0;
|
|
state->Phase = 0;
|
|
state->ld_sign = 1.0;
|
|
|
|
memset(state->InFIFO, 0, sizeof(state->InFIFO));
|
|
memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
|
|
memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
|
|
memset(state->Analytic, 0, sizeof(state->Analytic));
|
|
|
|
memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
|
|
memset(state->TargetGains, 0, sizeof(state->TargetGains));
|
|
|
|
return AL_TRUE;
|
|
}
|
|
|
|
static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
|
|
{
|
|
const ALCdevice *device = context->Device;
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
ALfloat step;
|
|
|
|
step = props->Fshifter.Frequency / (ALfloat)device->Frequency;
|
|
state->PhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE);
|
|
|
|
switch(props->Fshifter.LeftDirection)
|
|
{
|
|
case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN:
|
|
state->ld_sign = -1.0;
|
|
break;
|
|
|
|
case AL_FREQUENCY_SHIFTER_DIRECTION_UP:
|
|
state->ld_sign = 1.0;
|
|
break;
|
|
|
|
case AL_FREQUENCY_SHIFTER_DIRECTION_OFF:
|
|
state->Phase = 0;
|
|
state->PhaseStep = 0;
|
|
break;
|
|
}
|
|
|
|
CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs);
|
|
ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains);
|
|
}
|
|
|
|
static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
|
|
{
|
|
static const ALcomplex complex_zero = { 0.0, 0.0 };
|
|
ALfloat *restrict BufferOut = state->BufferOut;
|
|
ALsizei j, k, base;
|
|
|
|
for(base = 0;base < SamplesToDo;)
|
|
{
|
|
ALsizei todo = mini(HIL_SIZE-state->count, SamplesToDo-base);
|
|
|
|
ASSUME(todo > 0);
|
|
|
|
/* Fill FIFO buffer with samples data */
|
|
k = state->count;
|
|
for(j = 0;j < todo;j++,k++)
|
|
{
|
|
state->InFIFO[k] = SamplesIn[0][base+j];
|
|
state->Outdata[base+j] = state->OutFIFO[k-FIFO_LATENCY];
|
|
}
|
|
state->count += todo;
|
|
base += todo;
|
|
|
|
/* Check whether FIFO buffer is filled */
|
|
if(state->count < HIL_SIZE) continue;
|
|
|
|
state->count = FIFO_LATENCY;
|
|
|
|
/* Real signal windowing and store in Analytic buffer */
|
|
for(k = 0;k < HIL_SIZE;k++)
|
|
{
|
|
state->Analytic[k].Real = state->InFIFO[k] * HannWindow[k];
|
|
state->Analytic[k].Imag = 0.0;
|
|
}
|
|
|
|
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
|
|
complex_hilbert(state->Analytic, HIL_SIZE);
|
|
|
|
/* Windowing and add to output accumulator */
|
|
for(k = 0;k < HIL_SIZE;k++)
|
|
{
|
|
state->OutputAccum[k].Real += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Real;
|
|
state->OutputAccum[k].Imag += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Imag;
|
|
}
|
|
|
|
/* Shift accumulator, input & output FIFO */
|
|
for(k = 0;k < HIL_STEP;k++) state->OutFIFO[k] = state->OutputAccum[k];
|
|
for(j = 0;k < HIL_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k];
|
|
for(;j < HIL_SIZE;j++) state->OutputAccum[j] = complex_zero;
|
|
for(k = 0;k < FIFO_LATENCY;k++)
|
|
state->InFIFO[k] = state->InFIFO[k+HIL_STEP];
|
|
}
|
|
|
|
/* Process frequency shifter using the analytic signal obtained. */
|
|
for(k = 0;k < SamplesToDo;k++)
|
|
{
|
|
ALdouble phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
|
|
BufferOut[k] = (ALfloat)(state->Outdata[k].Real*cos(phase) +
|
|
state->Outdata[k].Imag*sin(phase)*state->ld_sign);
|
|
|
|
state->Phase += state->PhaseStep;
|
|
state->Phase &= FRACTIONMASK;
|
|
}
|
|
|
|
/* Now, mix the processed sound data to the output. */
|
|
MixSamples(BufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains,
|
|
maxi(SamplesToDo, 512), 0, SamplesToDo);
|
|
}
|
|
|
|
typedef struct FshifterStateFactory {
|
|
DERIVE_FROM_TYPE(EffectStateFactory);
|
|
} FshifterStateFactory;
|
|
|
|
static ALeffectState *FshifterStateFactory_create(FshifterStateFactory *UNUSED(factory))
|
|
{
|
|
ALfshifterState *state;
|
|
|
|
NEW_OBJ0(state, ALfshifterState)();
|
|
if(!state) return NULL;
|
|
|
|
return STATIC_CAST(ALeffectState, state);
|
|
}
|
|
|
|
DEFINE_EFFECTSTATEFACTORY_VTABLE(FshifterStateFactory);
|
|
|
|
EffectStateFactory *FshifterStateFactory_getFactory(void)
|
|
{
|
|
static FshifterStateFactory FshifterFactory = { { GET_VTABLE2(FshifterStateFactory, EffectStateFactory) } };
|
|
|
|
return STATIC_CAST(EffectStateFactory, &FshifterFactory);
|
|
}
|
|
|
|
void ALfshifter_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FREQUENCY_SHIFTER_FREQUENCY:
|
|
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range");
|
|
props->Fshifter.Frequency = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
|
|
}
|
|
}
|
|
|
|
void ALfshifter_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
|
|
{
|
|
ALfshifter_setParamf(effect, context, param, vals[0]);
|
|
}
|
|
|
|
void ALfshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
|
|
{
|
|
ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
|
|
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range");
|
|
props->Fshifter.LeftDirection = val;
|
|
break;
|
|
|
|
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
|
|
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range");
|
|
props->Fshifter.RightDirection = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALfshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
|
|
{
|
|
ALfshifter_setParami(effect, context, param, vals[0]);
|
|
}
|
|
|
|
void ALfshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
|
|
{
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
|
|
*val = props->Fshifter.LeftDirection;
|
|
break;
|
|
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
|
|
*val = props->Fshifter.RightDirection;
|
|
break;
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void ALfshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
|
|
{
|
|
ALfshifter_getParami(effect, context, param, vals);
|
|
}
|
|
|
|
void ALfshifter_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
|
|
{
|
|
|
|
const ALeffectProps *props = &effect->Props;
|
|
switch(param)
|
|
{
|
|
case AL_FREQUENCY_SHIFTER_FREQUENCY:
|
|
*val = props->Fshifter.Frequency;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
|
|
}
|
|
|
|
}
|
|
|
|
void ALfshifter_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
|
|
{
|
|
ALfshifter_getParamf(effect, context, param, vals);
|
|
}
|
|
|
|
DEFINE_ALEFFECT_VTABLE(ALfshifter);
|