fcf9034c2b
This is so the matrix isn't derived each time a source is updated, and it will make supporting user-defined matrices easier.
314 lines
8.6 KiB
C
314 lines
8.6 KiB
C
#ifndef _ALU_H_
|
|
#define _ALU_H_
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "AL/alext.h"
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#ifdef HAVE_FLOAT_H
|
|
#include <float.h>
|
|
/* HACK: Seems cross-compiling with MinGW includes the wrong float.h, which
|
|
* doesn't define Windows' _controlfp and related macros */
|
|
#if defined(__MINGW32__) && !defined(_RC_CHOP)
|
|
/* Control word masks for unMask */
|
|
#define _MCW_EM 0x0008001F /* Error masks */
|
|
#define _MCW_IC 0x00040000 /* Infinity */
|
|
#define _MCW_RC 0x00000300 /* Rounding */
|
|
#define _MCW_PC 0x00030000 /* Precision */
|
|
/* Control word values for unNew (use with related unMask above) */
|
|
#define _EM_INVALID 0x00000010
|
|
#define _EM_DENORMAL 0x00080000
|
|
#define _EM_ZERODIVIDE 0x00000008
|
|
#define _EM_OVERFLOW 0x00000004
|
|
#define _EM_UNDERFLOW 0x00000002
|
|
#define _EM_INEXACT 0x00000001
|
|
#define _IC_AFFINE 0x00040000
|
|
#define _IC_PROJECTIVE 0x00000000
|
|
#define _RC_CHOP 0x00000300
|
|
#define _RC_UP 0x00000200
|
|
#define _RC_DOWN 0x00000100
|
|
#define _RC_NEAR 0x00000000
|
|
#define _PC_24 0x00020000
|
|
#define _PC_53 0x00010000
|
|
#define _PC_64 0x00000000
|
|
_CRTIMP unsigned int __cdecl __MINGW_NOTHROW _controlfp (unsigned int unNew, unsigned int unMask);
|
|
#endif
|
|
#endif
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
|
|
#define F_PI (3.14159265358979323846f) /* pi */
|
|
#define F_PI_2 (1.57079632679489661923f) /* pi/2 */
|
|
|
|
#ifdef HAVE_POWF
|
|
#define aluPow(x,y) (powf((x),(y)))
|
|
#else
|
|
#define aluPow(x,y) ((ALfloat)pow((double)(x),(double)(y)))
|
|
#endif
|
|
|
|
#ifdef HAVE_SQRTF
|
|
#define aluSqrt(x) (sqrtf((x)))
|
|
#else
|
|
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_COSF
|
|
#define aluCos(x) (cosf((x)))
|
|
#else
|
|
#define aluCos(x) ((ALfloat)cos((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_SINF
|
|
#define aluSin(x) (sinf((x)))
|
|
#else
|
|
#define aluSin(x) ((ALfloat)sin((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_ACOSF
|
|
#define aluAcos(x) (acosf((x)))
|
|
#else
|
|
#define aluAcos(x) ((ALfloat)acos((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_ASINF
|
|
#define aluAsin(x) (asinf((x)))
|
|
#else
|
|
#define aluAsin(x) ((ALfloat)asin((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_ATANF
|
|
#define aluAtan(x) (atanf((x)))
|
|
#else
|
|
#define aluAtan(x) ((ALfloat)atan((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_ATAN2F
|
|
#define aluAtan2(x,y) (atan2f((x),(y)))
|
|
#else
|
|
#define aluAtan2(x,y) ((ALfloat)atan2((double)(x),(double)(y)))
|
|
#endif
|
|
|
|
#ifdef HAVE_FABSF
|
|
#define aluFabs(x) (fabsf((x)))
|
|
#else
|
|
#define aluFabs(x) ((ALfloat)fabs((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_LOG10F
|
|
#define aluLog10(x) (log10f((x)))
|
|
#else
|
|
#define aluLog10(x) ((ALfloat)log10((double)(x)))
|
|
#endif
|
|
|
|
#ifdef HAVE_FLOORF
|
|
#define aluFloor(x) (floorf((x)))
|
|
#else
|
|
#define aluFloor(x) ((ALfloat)floor((double)(x)))
|
|
#endif
|
|
|
|
#define QUADRANT_NUM 128
|
|
#define LUT_NUM (4 * QUADRANT_NUM)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
struct ALsource;
|
|
struct ALbuffer;
|
|
|
|
typedef ALvoid (*MixerFunc)(struct ALsource *self, ALCdevice *Device,
|
|
const ALvoid *RESTRICT data,
|
|
ALuint *DataPosInt, ALuint *DataPosFrac,
|
|
ALuint OutPos, ALuint SamplesToDo,
|
|
ALuint BufferSize);
|
|
|
|
enum Resampler {
|
|
POINT_RESAMPLER = 0,
|
|
LINEAR_RESAMPLER,
|
|
CUBIC_RESAMPLER,
|
|
|
|
RESAMPLER_MAX,
|
|
RESAMPLER_MIN = -1,
|
|
RESAMPLER_DEFAULT = LINEAR_RESAMPLER
|
|
};
|
|
|
|
enum Channel {
|
|
FRONT_LEFT = 0,
|
|
FRONT_RIGHT,
|
|
FRONT_CENTER,
|
|
LFE,
|
|
BACK_LEFT,
|
|
BACK_RIGHT,
|
|
BACK_CENTER,
|
|
SIDE_LEFT,
|
|
SIDE_RIGHT,
|
|
|
|
MAXCHANNELS
|
|
};
|
|
|
|
enum DistanceModel {
|
|
InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
|
|
LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
|
|
ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
|
|
InverseDistance = AL_INVERSE_DISTANCE,
|
|
LinearDistance = AL_LINEAR_DISTANCE,
|
|
ExponentDistance = AL_EXPONENT_DISTANCE,
|
|
DisableDistance = AL_NONE
|
|
};
|
|
|
|
#define BUFFERSIZE 4096
|
|
|
|
#define FRACTIONBITS (14)
|
|
#define FRACTIONONE (1<<FRACTIONBITS)
|
|
#define FRACTIONMASK (FRACTIONONE-1)
|
|
|
|
/* Size for temporary stack storage of buffer data. Must be a multiple of the
|
|
* size of ALfloat, ie, 4. Larger values need more stack, while smaller values
|
|
* may need more iterations. The value needs to be a sensible size, however, as
|
|
* it constrains the max stepping value used for mixing.
|
|
* The mixer requires being able to do two samplings per mixing loop. A 16KB
|
|
* buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic
|
|
* resampler (which requires 3 padding sample frames), this limits the maximum
|
|
* step to about 508. This means that buffer_freq*source_pitch cannot exceed
|
|
* device_freq*508 for an 8-channel 32-bit buffer. */
|
|
#ifndef STACK_DATA_SIZE
|
|
#define STACK_DATA_SIZE 16384
|
|
#endif
|
|
|
|
|
|
static __inline ALfloat minf(ALfloat a, ALfloat b)
|
|
{ return ((a > b) ? b : a); }
|
|
static __inline ALfloat maxf(ALfloat a, ALfloat b)
|
|
{ return ((a > b) ? a : b); }
|
|
static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
|
|
{ return minf(max, maxf(min, val)); }
|
|
|
|
static __inline ALuint minu(ALuint a, ALuint b)
|
|
{ return ((a > b) ? b : a); }
|
|
static __inline ALuint maxu(ALuint a, ALuint b)
|
|
{ return ((a > b) ? a : b); }
|
|
static __inline ALuint clampu(ALuint val, ALuint min, ALuint max)
|
|
{ return minu(max, maxu(min, val)); }
|
|
|
|
static __inline ALint mini(ALint a, ALint b)
|
|
{ return ((a > b) ? b : a); }
|
|
static __inline ALint maxi(ALint a, ALint b)
|
|
{ return ((a > b) ? a : b); }
|
|
static __inline ALint clampi(ALint val, ALint min, ALint max)
|
|
{ return mini(max, maxi(min, val)); }
|
|
|
|
static __inline ALint64 mini64(ALint64 a, ALint64 b)
|
|
{ return ((a > b) ? b : a); }
|
|
static __inline ALint64 maxi64(ALint64 a, ALint64 b)
|
|
{ return ((a > b) ? a : b); }
|
|
static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
|
|
{ return mini64(max, maxi64(min, val)); }
|
|
|
|
|
|
static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
|
|
{
|
|
return val1 + (val2-val1)*mu;
|
|
}
|
|
static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
|
|
{
|
|
ALfloat mu2 = mu*mu;
|
|
ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
|
|
ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
|
|
ALfloat a2 = -0.5f*val0 + 0.5f*val2;
|
|
ALfloat a3 = val1;
|
|
|
|
return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
|
|
}
|
|
|
|
|
|
static __inline int SetMixerFPUMode(void)
|
|
{
|
|
#if defined(_FPU_GETCW) && defined(_FPU_SETCW)
|
|
fpu_control_t fpuState, newState;
|
|
_FPU_GETCW(fpuState);
|
|
newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE |
|
|
_FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO);
|
|
newState |= _FPU_SINGLE | _FPU_RC_ZERO;
|
|
_FPU_SETCW(newState);
|
|
#else
|
|
int fpuState;
|
|
#if defined(HAVE__CONTROLFP)
|
|
fpuState = _controlfp(0, 0);
|
|
(void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC);
|
|
#elif defined(HAVE_FESETROUND)
|
|
fpuState = fegetround();
|
|
fesetround(FE_TOWARDZERO);
|
|
#endif
|
|
#endif
|
|
return fpuState;
|
|
}
|
|
|
|
static __inline void RestoreFPUMode(int state)
|
|
{
|
|
#if defined(_FPU_GETCW) && defined(_FPU_SETCW)
|
|
fpu_control_t fpuState = state;
|
|
_FPU_SETCW(fpuState);
|
|
#elif defined(HAVE__CONTROLFP)
|
|
_controlfp(state, _MCW_RC|_MCW_PC);
|
|
#elif defined(HAVE_FESETROUND)
|
|
fesetround(state);
|
|
#endif
|
|
}
|
|
|
|
|
|
static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
|
|
{
|
|
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
|
|
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
|
|
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
|
|
}
|
|
|
|
static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
|
|
{
|
|
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
|
|
inVector1[2]*inVector2[2];
|
|
}
|
|
|
|
static __inline void aluNormalize(ALfloat *inVector)
|
|
{
|
|
ALfloat length, inverse_length;
|
|
|
|
length = aluSqrt(aluDotproduct(inVector, inVector));
|
|
if(length > 0.0f)
|
|
{
|
|
inverse_length = 1.0f/length;
|
|
inVector[0] *= inverse_length;
|
|
inVector[1] *= inverse_length;
|
|
inVector[2] *= inverse_length;
|
|
}
|
|
}
|
|
|
|
|
|
ALvoid aluInitPanning(ALCdevice *Device);
|
|
ALint aluCart2LUTpos(ALfloat re, ALfloat im);
|
|
|
|
ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
|
|
ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
|
|
|
|
MixerFunc SelectMixer(enum Resampler Resampler);
|
|
MixerFunc SelectHrtfMixer(enum Resampler Resampler);
|
|
|
|
ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo);
|
|
|
|
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
|
|
ALvoid aluHandleDisconnect(ALCdevice *device);
|
|
|
|
extern ALfloat ConeScale;
|
|
extern ALfloat ZScale;
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|