521 lines
18 KiB
C++
521 lines
18 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
|
|
#include "al/auxeffectslot.h"
|
|
#include "alcmain.h"
|
|
#include "alcomplex.h"
|
|
#include "alcontext.h"
|
|
#include "almalloc.h"
|
|
#include "alspan.h"
|
|
#include "ambidefs.h"
|
|
#include "bformatdec.h"
|
|
#include "buffer_storage.h"
|
|
#include "effects/base.h"
|
|
#include "filters/splitter.h"
|
|
#include "fmt_traits.h"
|
|
#include "logging.h"
|
|
#include "polyphase_resampler.h"
|
|
|
|
|
|
namespace {
|
|
|
|
/* Convolution reverb is implemented using a segmented overlap-add method. The
|
|
* impulse response is broken up into multiple segments of 512 samples, and
|
|
* each segment has an FFT applied with a 1024-sample buffer (the latter half
|
|
* left silent) to get its frequency-domain response. The resulting response
|
|
* has its positive/non-mirrored frequencies saved (513 bins) in each segment.
|
|
*
|
|
* Input samples are similarly broken up into 512-sample segments, with an FFT
|
|
* applied to each new incoming segment to get its 513 bins. A history of FFT'd
|
|
* input segments is maintained, equal to the length of the impulse response.
|
|
*
|
|
* To apply the reverberation, each impulse response segment is convolved with
|
|
* its paired input segment (using complex multiplies, far cheaper than FIRs),
|
|
* accumulating into a 1024-bin FFT buffer. The input history is then shifted
|
|
* to align with later impulse response segments for next time.
|
|
*
|
|
* An inverse FFT is then applied to the accumulated FFT buffer to get a 1024-
|
|
* sample time-domain response for output, which is split in two halves. The
|
|
* first half is the 512-sample output, and the second half is a 512-sample
|
|
* (really, 511) delayed extension, which gets added to the output next time.
|
|
* Convolving two time-domain responses of lengths N and M results in a time-
|
|
* domain signal of length N+M-1, and this holds true regardless of the
|
|
* convolution being applied in the frequency domain, so these "overflow"
|
|
* samples need to be accounted for.
|
|
*
|
|
* Limitations:
|
|
* There is currently a 512-sample delay on the output, as a result of needing
|
|
* to collect that many input samples to do an FFT with. This can be fixed by
|
|
* excluding the first impulse response segment from being FFT'd, and applying
|
|
* it directly in the time domain. This will have higher CPU consumption, but
|
|
* it won't have to wait before generating output.
|
|
*/
|
|
|
|
|
|
void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
|
|
const size_t samples) noexcept
|
|
{
|
|
#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
|
|
switch(srctype)
|
|
{
|
|
HANDLE_FMT(FmtUByte);
|
|
HANDLE_FMT(FmtShort);
|
|
HANDLE_FMT(FmtFloat);
|
|
HANDLE_FMT(FmtDouble);
|
|
HANDLE_FMT(FmtMulaw);
|
|
HANDLE_FMT(FmtAlaw);
|
|
}
|
|
#undef HANDLE_FMT
|
|
}
|
|
|
|
|
|
auto GetAmbiScales(AmbiScaling scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
|
|
{
|
|
if(scaletype == AmbiScaling::FuMa) return AmbiScale::FromFuMa;
|
|
if(scaletype == AmbiScaling::SN3D) return AmbiScale::FromSN3D;
|
|
return AmbiScale::FromN3D;
|
|
}
|
|
|
|
auto GetAmbiLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI_CHANNELS>&
|
|
{
|
|
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa;
|
|
return AmbiIndex::FromACN;
|
|
}
|
|
|
|
auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI2D_CHANNELS>&
|
|
{
|
|
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D;
|
|
return AmbiIndex::From2D;
|
|
}
|
|
|
|
|
|
using complex_d = std::complex<double>;
|
|
|
|
constexpr size_t ConvolveUpdateSize{1024};
|
|
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
|
|
|
|
|
|
struct ConvolutionState final : public EffectState {
|
|
FmtChannels mChannels{};
|
|
AmbiLayout mAmbiLayout{};
|
|
AmbiScaling mAmbiScaling{};
|
|
ALuint mAmbiOrder{};
|
|
|
|
size_t mFifoPos{0};
|
|
al::vector<std::array<double,ConvolveUpdateSamples*2>,16> mOutput;
|
|
alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
|
|
|
|
size_t mCurrentSegment{0};
|
|
size_t mNumConvolveSegs{0};
|
|
|
|
struct ChannelData {
|
|
alignas(16) FloatBufferLine mBuffer{};
|
|
float mHfScale{};
|
|
BandSplitter mFilter{};
|
|
float Current[MAX_OUTPUT_CHANNELS]{};
|
|
float Target[MAX_OUTPUT_CHANNELS]{};
|
|
};
|
|
using ChannelDataArray = al::FlexArray<ChannelData>;
|
|
std::unique_ptr<ChannelDataArray> mChans;
|
|
std::unique_ptr<complex_d[]> mComplexData;
|
|
|
|
|
|
ConvolutionState() = default;
|
|
~ConvolutionState() override = default;
|
|
|
|
void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
|
|
void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
|
|
void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
|
|
{&ConvolutionState::NormalMix};
|
|
|
|
void deviceUpdate(const ALCdevice *device) override;
|
|
void setBuffer(const ALCdevice *device, const BufferStorage *buffer) override;
|
|
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
DEF_NEWDEL(ConvolutionState)
|
|
};
|
|
|
|
void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
|
|
const size_t samplesToDo)
|
|
{
|
|
for(auto &chan : *mChans)
|
|
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
|
|
samplesToDo, 0);
|
|
}
|
|
|
|
void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
|
|
const size_t samplesToDo)
|
|
{
|
|
for(auto &chan : *mChans)
|
|
{
|
|
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
|
|
chan.mFilter.processHfScale(src, chan.mHfScale);
|
|
MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
|
|
}
|
|
}
|
|
|
|
|
|
void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/)
|
|
{
|
|
}
|
|
|
|
void ConvolutionState::setBuffer(const ALCdevice *device, const BufferStorage *buffer)
|
|
{
|
|
mFifoPos = 0;
|
|
decltype(mOutput){}.swap(mOutput);
|
|
mFftBuffer.fill(complex_d{});
|
|
|
|
mCurrentSegment = 0;
|
|
mNumConvolveSegs = 0;
|
|
|
|
mChans = nullptr;
|
|
mComplexData = nullptr;
|
|
|
|
/* An empty buffer doesn't need a convolution filter. */
|
|
if(!buffer || buffer->mSampleLen < 1) return;
|
|
|
|
/* FIXME: Support anything. */
|
|
if(buffer->mChannels != FmtMono && buffer->mChannels != FmtStereo
|
|
&& buffer->mChannels != FmtBFormat2D && buffer->mChannels != FmtBFormat3D)
|
|
return;
|
|
if((buffer->mChannels == FmtBFormat2D || buffer->mChannels == FmtBFormat3D)
|
|
&& buffer->mAmbiOrder > 1)
|
|
return;
|
|
|
|
constexpr size_t m{ConvolveUpdateSize/2 + 1};
|
|
auto bytesPerSample = BytesFromFmt(buffer->mType);
|
|
auto realChannels = ChannelsFromFmt(buffer->mChannels, buffer->mAmbiOrder);
|
|
auto numChannels = ChannelsFromFmt(buffer->mChannels,
|
|
minu(buffer->mAmbiOrder, device->mAmbiOrder));
|
|
|
|
mChans = ChannelDataArray::Create(numChannels);
|
|
|
|
/* The impulse response needs to have the same sample rate as the input and
|
|
* output. The bsinc24 resampler is decent, but there is high-frequency
|
|
* attenation that some people may be able to pick up on. Since this is
|
|
* called very infrequently, go ahead and use the polyphase resampler.
|
|
*/
|
|
PPhaseResampler resampler;
|
|
if(device->Frequency != buffer->mSampleRate)
|
|
resampler.init(buffer->mSampleRate, device->Frequency);
|
|
const auto resampledCount = static_cast<ALuint>(
|
|
(uint64_t{buffer->mSampleLen}*device->Frequency + (buffer->mSampleRate-1)) /
|
|
buffer->mSampleRate);
|
|
|
|
const BandSplitter splitter{400.0f / static_cast<float>(device->Frequency)};
|
|
for(auto &e : *mChans)
|
|
e.mFilter = splitter;
|
|
|
|
mOutput.resize(numChannels, {});
|
|
|
|
/* Calculate the number of segments needed to hold the impulse response and
|
|
* the input history (rounded up), and allocate them.
|
|
*/
|
|
mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
|
|
|
|
const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
|
|
mComplexData = std::make_unique<complex_d[]>(complex_length);
|
|
std::fill_n(mComplexData.get(), complex_length, complex_d{});
|
|
|
|
mChannels = buffer->mChannels;
|
|
mAmbiLayout = buffer->mAmbiLayout;
|
|
mAmbiScaling = buffer->mAmbiScaling;
|
|
mAmbiOrder = buffer->mAmbiOrder;
|
|
|
|
auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>();
|
|
auto srcsamples = std::make_unique<double[]>(maxz(buffer->mSampleLen, resampledCount));
|
|
complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m;
|
|
for(size_t c{0};c < numChannels;++c)
|
|
{
|
|
/* Load the samples from the buffer, and resample to match the device. */
|
|
LoadSamples(srcsamples.get(), buffer->mData.data() + bytesPerSample*c, realChannels,
|
|
buffer->mType, buffer->mSampleLen);
|
|
if(device->Frequency != buffer->mSampleRate)
|
|
resampler.process(buffer->mSampleLen, srcsamples.get(), resampledCount,
|
|
srcsamples.get());
|
|
|
|
size_t done{0};
|
|
for(size_t s{0};s < mNumConvolveSegs;++s)
|
|
{
|
|
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
|
|
|
|
auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin());
|
|
done += todo;
|
|
std::fill(iter, fftbuffer->end(), complex_d{});
|
|
|
|
complex_fft(*fftbuffer, -1.0);
|
|
filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slot,
|
|
const EffectProps* /*props*/, const EffectTarget target)
|
|
{
|
|
if(mNumConvolveSegs < 1)
|
|
return;
|
|
|
|
ALCdevice *device{context->mDevice.get()};
|
|
mMix = &ConvolutionState::NormalMix;
|
|
|
|
/* The iFFT'd response is scaled up by the number of bins, so apply the
|
|
* inverse to the output mixing gain.
|
|
*/
|
|
const float gain{slot->Params.Gain * (1.0f/float{ConvolveUpdateSize})};
|
|
auto &chans = *mChans;
|
|
if(mChannels == FmtBFormat3D || mChannels == FmtBFormat2D)
|
|
{
|
|
if(device->mAmbiOrder > mAmbiOrder)
|
|
{
|
|
mMix = &ConvolutionState::UpsampleMix;
|
|
const auto scales = BFormatDec::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder);
|
|
chans[0].mHfScale = scales[0];
|
|
for(size_t i{1};i < chans.size();++i)
|
|
chans[i].mHfScale = scales[1];
|
|
}
|
|
mOutTarget = target.Main->Buffer;
|
|
|
|
const auto &scales = GetAmbiScales(mAmbiScaling);
|
|
const uint8_t *index_map{(mChannels == FmtBFormat2D) ?
|
|
GetAmbi2DLayout(mAmbiLayout).data() :
|
|
GetAmbiLayout(mAmbiLayout).data()};
|
|
|
|
std::array<float,MAX_AMBI_CHANNELS> coeffs{};
|
|
for(size_t c{0u};c < chans.size();++c)
|
|
{
|
|
const size_t acn{index_map[c]};
|
|
coeffs[acn] = scales[acn];
|
|
ComputePanGains(target.Main, coeffs.data(), gain, chans[c].Target);
|
|
coeffs[acn] = 0.0f;
|
|
}
|
|
}
|
|
else if(mChannels == FmtStereo)
|
|
{
|
|
/* TODO: Add a "direct channels" setting for this effect? */
|
|
const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX :
|
|
GetChannelIdxByName(*target.RealOut, FrontLeft)};
|
|
const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX :
|
|
GetChannelIdxByName(*target.RealOut, FrontRight)};
|
|
if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX)
|
|
{
|
|
mOutTarget = target.RealOut->Buffer;
|
|
chans[0].Target[lidx] = gain;
|
|
chans[1].Target[ridx] = gain;
|
|
}
|
|
else
|
|
{
|
|
const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
|
|
const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
ComputePanGains(target.Main, lcoeffs.data(), gain, chans[0].Target);
|
|
ComputePanGains(target.Main, rcoeffs.data(), gain, chans[1].Target);
|
|
}
|
|
}
|
|
else if(mChannels == FmtMono)
|
|
{
|
|
const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
ComputePanGains(target.Main, coeffs.data(), gain, chans[0].Target);
|
|
}
|
|
}
|
|
|
|
void ConvolutionState::process(const size_t samplesToDo,
|
|
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
if(mNumConvolveSegs < 1)
|
|
return;
|
|
|
|
constexpr size_t m{ConvolveUpdateSize/2 + 1};
|
|
size_t curseg{mCurrentSegment};
|
|
auto &chans = *mChans;
|
|
|
|
for(size_t base{0u};base < samplesToDo;)
|
|
{
|
|
const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
|
|
|
|
/* Retrieve the output samples from the FIFO and fill in the new input
|
|
* samples.
|
|
*/
|
|
for(size_t c{0};c < chans.size();++c)
|
|
{
|
|
auto fifo_iter = mOutput[c].begin() + mFifoPos;
|
|
std::transform(fifo_iter, fifo_iter+todo, chans[c].mBuffer.begin()+base,
|
|
[](double d) noexcept -> float { return static_cast<float>(d); });
|
|
}
|
|
|
|
std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos);
|
|
mFifoPos += todo;
|
|
base += todo;
|
|
|
|
/* Check whether FIFO buffer is filled with new samples. */
|
|
if(mFifoPos < ConvolveUpdateSamples) break;
|
|
mFifoPos = 0;
|
|
|
|
/* Calculate the frequency domain response and add the relevant
|
|
* frequency bins to the input history.
|
|
*/
|
|
complex_fft(mFftBuffer, -1.0);
|
|
|
|
std::copy_n(mFftBuffer.begin(), m, &mComplexData[curseg*m]);
|
|
mFftBuffer.fill(complex_d{});
|
|
|
|
const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
|
|
for(size_t c{0};c < chans.size();++c)
|
|
{
|
|
/* Convolve each input segment with its IR filter counterpart
|
|
* (aligned in time).
|
|
*/
|
|
const complex_d *RESTRICT input{&mComplexData[curseg*m]};
|
|
for(size_t s{curseg};s < mNumConvolveSegs;++s)
|
|
{
|
|
for(size_t i{0};i < m;++i,++input,++filter)
|
|
mFftBuffer[i] += *input * *filter;
|
|
}
|
|
input = mComplexData.get();
|
|
for(size_t s{0};s < curseg;++s)
|
|
{
|
|
for(size_t i{0};i < m;++i,++input,++filter)
|
|
mFftBuffer[i] += *input * *filter;
|
|
}
|
|
|
|
/* Reconstruct the mirrored/negative frequencies to do a proper
|
|
* inverse FFT.
|
|
*/
|
|
for(size_t i{m};i < ConvolveUpdateSize;++i)
|
|
mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
|
|
|
|
/* Apply iFFT to get the 1024 (really 1023) samples for output. The
|
|
* 512 output samples are combined with the last output's 511
|
|
* second-half samples (and this output's second half is
|
|
* subsequently saved for next time).
|
|
*/
|
|
complex_fft(mFftBuffer, 1.0);
|
|
|
|
for(size_t i{0};i < ConvolveUpdateSamples;++i)
|
|
mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i];
|
|
for(size_t i{0};i < ConvolveUpdateSamples;++i)
|
|
mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
|
|
mFftBuffer.fill(complex_d{});
|
|
}
|
|
|
|
/* Shift the input history. */
|
|
curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
|
|
}
|
|
mCurrentSegment = curseg;
|
|
|
|
/* Finally, mix to the output. */
|
|
(this->*mMix)(samplesOut, samplesToDo);
|
|
}
|
|
|
|
|
|
void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
|
|
param};
|
|
}
|
|
}
|
|
void ConvolutionEffect_setParamiv(EffectProps *props, ALenum param, const int *vals)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
ConvolutionEffect_setParami(props, param, vals[0]);
|
|
}
|
|
}
|
|
void ConvolutionEffect_setParamf(EffectProps* /*props*/, ALenum param, float /*val*/)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
|
|
param};
|
|
}
|
|
}
|
|
void ConvolutionEffect_setParamfv(EffectProps *props, ALenum param, const float *vals)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
ConvolutionEffect_setParamf(props, param, vals[0]);
|
|
}
|
|
}
|
|
|
|
void ConvolutionEffect_getParami(const EffectProps* /*props*/, ALenum param, int* /*val*/)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
|
|
param};
|
|
}
|
|
}
|
|
void ConvolutionEffect_getParamiv(const EffectProps *props, ALenum param, int *vals)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
ConvolutionEffect_getParami(props, param, vals);
|
|
}
|
|
}
|
|
void ConvolutionEffect_getParamf(const EffectProps* /*props*/, ALenum param, float* /*val*/)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
|
|
param};
|
|
}
|
|
}
|
|
void ConvolutionEffect_getParamfv(const EffectProps *props, ALenum param, float *vals)
|
|
{
|
|
switch(param)
|
|
{
|
|
default:
|
|
ConvolutionEffect_getParamf(props, param, vals);
|
|
}
|
|
}
|
|
|
|
DEFINE_ALEFFECT_VTABLE(ConvolutionEffect);
|
|
|
|
|
|
struct ConvolutionStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override;
|
|
EffectProps getDefaultProps() const noexcept override;
|
|
const EffectVtable *getEffectVtable() const noexcept override;
|
|
};
|
|
|
|
/* Creates EffectState objects of the appropriate type. */
|
|
EffectState *ConvolutionStateFactory::create()
|
|
{ return new ConvolutionState{}; }
|
|
|
|
/* Returns an ALeffectProps initialized with this effect type's default
|
|
* property values.
|
|
*/
|
|
EffectProps ConvolutionStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
EffectProps props{};
|
|
return props;
|
|
}
|
|
|
|
/* Returns a pointer to this effect type's global set/get vtable. */
|
|
const EffectVtable *ConvolutionStateFactory::getEffectVtable() const noexcept
|
|
{ return &ConvolutionEffect_vtable; }
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *ConvolutionStateFactory_getFactory()
|
|
{
|
|
static ConvolutionStateFactory ConvolutionFactory{};
|
|
return &ConvolutionFactory;
|
|
}
|