openal-soft/alc/alc.cpp
2020-06-28 12:55:55 -07:00

4130 lines
124 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "version.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <exception>
#include <algorithm>
#include <array>
#include <atomic>
#include <cctype>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <csignal>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <mutex>
#include <new>
#include <numeric>
#include <string>
#include <thread>
#include <utility>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "AL/efx.h"
#include "al/auxeffectslot.h"
#include "al/effect.h"
#include "al/event.h"
#include "al/filter.h"
#include "al/listener.h"
#include "al/source.h"
#include "alcmain.h"
#include "albyte.h"
#include "alconfig.h"
#include "alcontext.h"
#include "alexcpt.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "ambidefs.h"
#include "atomic.h"
#include "bformatdec.h"
#include "bs2b.h"
#include "compat.h"
#include "cpu_caps.h"
#include "devformat.h"
#include "effects/base.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "fpu_ctrl.h"
#include "front_stablizer.h"
#include "hrtf.h"
#include "inprogext.h"
#include "intrusive_ptr.h"
#include "logging.h"
#include "mastering.h"
#include "opthelpers.h"
#include "pragmadefs.h"
#include "ringbuffer.h"
#include "strutils.h"
#include "threads.h"
#include "uhjfilter.h"
#include "vecmat.h"
#include "vector.h"
#include "backends/base.h"
#include "backends/null.h"
#include "backends/loopback.h"
#ifdef HAVE_JACK
#include "backends/jack.h"
#endif
#ifdef HAVE_PULSEAUDIO
#include "backends/pulseaudio.h"
#endif
#ifdef HAVE_ALSA
#include "backends/alsa.h"
#endif
#ifdef HAVE_WASAPI
#include "backends/wasapi.h"
#endif
#ifdef HAVE_COREAUDIO
#include "backends/coreaudio.h"
#endif
#ifdef HAVE_OPENSL
#include "backends/opensl.h"
#endif
#ifdef HAVE_OBOE
#include "backends/oboe.h"
#endif
#ifdef HAVE_SOLARIS
#include "backends/solaris.h"
#endif
#ifdef HAVE_SNDIO
#include "backends/sndio.h"
#endif
#ifdef HAVE_OSS
#include "backends/oss.h"
#endif
#ifdef HAVE_DSOUND
#include "backends/dsound.h"
#endif
#ifdef HAVE_WINMM
#include "backends/winmm.h"
#endif
#ifdef HAVE_PORTAUDIO
#include "backends/portaudio.h"
#endif
#ifdef HAVE_SDL2
#include "backends/sdl2.h"
#endif
#ifdef HAVE_WAVE
#include "backends/wave.h"
#endif
namespace {
using namespace std::placeholders;
using std::chrono::seconds;
using std::chrono::nanoseconds;
/************************************************
* Backends
************************************************/
struct BackendInfo {
const char *name;
BackendFactory& (*getFactory)(void);
};
BackendInfo BackendList[] = {
#ifdef HAVE_JACK
{ "jack", JackBackendFactory::getFactory },
#endif
#ifdef HAVE_PULSEAUDIO
{ "pulse", PulseBackendFactory::getFactory },
#endif
#ifdef HAVE_ALSA
{ "alsa", AlsaBackendFactory::getFactory },
#endif
#ifdef HAVE_WASAPI
{ "wasapi", WasapiBackendFactory::getFactory },
#endif
#ifdef HAVE_COREAUDIO
{ "core", CoreAudioBackendFactory::getFactory },
#endif
#ifdef HAVE_OBOE
{ "oboe", OboeBackendFactory::getFactory },
#endif
#ifdef HAVE_OPENSL
{ "opensl", OSLBackendFactory::getFactory },
#endif
#ifdef HAVE_SOLARIS
{ "solaris", SolarisBackendFactory::getFactory },
#endif
#ifdef HAVE_SNDIO
{ "sndio", SndIOBackendFactory::getFactory },
#endif
#ifdef HAVE_OSS
{ "oss", OSSBackendFactory::getFactory },
#endif
#ifdef HAVE_DSOUND
{ "dsound", DSoundBackendFactory::getFactory },
#endif
#ifdef HAVE_WINMM
{ "winmm", WinMMBackendFactory::getFactory },
#endif
#ifdef HAVE_PORTAUDIO
{ "port", PortBackendFactory::getFactory },
#endif
#ifdef HAVE_SDL2
{ "sdl2", SDL2BackendFactory::getFactory },
#endif
{ "null", NullBackendFactory::getFactory },
#ifdef HAVE_WAVE
{ "wave", WaveBackendFactory::getFactory },
#endif
};
BackendFactory *PlaybackFactory{};
BackendFactory *CaptureFactory{};
/************************************************
* Functions, enums, and errors
************************************************/
#define DECL(x) { #x, reinterpret_cast<void*>(x) }
const struct {
const char *funcName;
void *address;
} alcFunctions[] = {
DECL(alcCreateContext),
DECL(alcMakeContextCurrent),
DECL(alcProcessContext),
DECL(alcSuspendContext),
DECL(alcDestroyContext),
DECL(alcGetCurrentContext),
DECL(alcGetContextsDevice),
DECL(alcOpenDevice),
DECL(alcCloseDevice),
DECL(alcGetError),
DECL(alcIsExtensionPresent),
DECL(alcGetProcAddress),
DECL(alcGetEnumValue),
DECL(alcGetString),
DECL(alcGetIntegerv),
DECL(alcCaptureOpenDevice),
DECL(alcCaptureCloseDevice),
DECL(alcCaptureStart),
DECL(alcCaptureStop),
DECL(alcCaptureSamples),
DECL(alcSetThreadContext),
DECL(alcGetThreadContext),
DECL(alcLoopbackOpenDeviceSOFT),
DECL(alcIsRenderFormatSupportedSOFT),
DECL(alcRenderSamplesSOFT),
DECL(alcDevicePauseSOFT),
DECL(alcDeviceResumeSOFT),
DECL(alcGetStringiSOFT),
DECL(alcResetDeviceSOFT),
DECL(alcGetInteger64vSOFT),
DECL(alEnable),
DECL(alDisable),
DECL(alIsEnabled),
DECL(alGetString),
DECL(alGetBooleanv),
DECL(alGetIntegerv),
DECL(alGetFloatv),
DECL(alGetDoublev),
DECL(alGetBoolean),
DECL(alGetInteger),
DECL(alGetFloat),
DECL(alGetDouble),
DECL(alGetError),
DECL(alIsExtensionPresent),
DECL(alGetProcAddress),
DECL(alGetEnumValue),
DECL(alListenerf),
DECL(alListener3f),
DECL(alListenerfv),
DECL(alListeneri),
DECL(alListener3i),
DECL(alListeneriv),
DECL(alGetListenerf),
DECL(alGetListener3f),
DECL(alGetListenerfv),
DECL(alGetListeneri),
DECL(alGetListener3i),
DECL(alGetListeneriv),
DECL(alGenSources),
DECL(alDeleteSources),
DECL(alIsSource),
DECL(alSourcef),
DECL(alSource3f),
DECL(alSourcefv),
DECL(alSourcei),
DECL(alSource3i),
DECL(alSourceiv),
DECL(alGetSourcef),
DECL(alGetSource3f),
DECL(alGetSourcefv),
DECL(alGetSourcei),
DECL(alGetSource3i),
DECL(alGetSourceiv),
DECL(alSourcePlayv),
DECL(alSourceStopv),
DECL(alSourceRewindv),
DECL(alSourcePausev),
DECL(alSourcePlay),
DECL(alSourceStop),
DECL(alSourceRewind),
DECL(alSourcePause),
DECL(alSourceQueueBuffers),
DECL(alSourceUnqueueBuffers),
DECL(alGenBuffers),
DECL(alDeleteBuffers),
DECL(alIsBuffer),
DECL(alBufferData),
DECL(alBufferf),
DECL(alBuffer3f),
DECL(alBufferfv),
DECL(alBufferi),
DECL(alBuffer3i),
DECL(alBufferiv),
DECL(alGetBufferf),
DECL(alGetBuffer3f),
DECL(alGetBufferfv),
DECL(alGetBufferi),
DECL(alGetBuffer3i),
DECL(alGetBufferiv),
DECL(alDopplerFactor),
DECL(alDopplerVelocity),
DECL(alSpeedOfSound),
DECL(alDistanceModel),
DECL(alGenFilters),
DECL(alDeleteFilters),
DECL(alIsFilter),
DECL(alFilteri),
DECL(alFilteriv),
DECL(alFilterf),
DECL(alFilterfv),
DECL(alGetFilteri),
DECL(alGetFilteriv),
DECL(alGetFilterf),
DECL(alGetFilterfv),
DECL(alGenEffects),
DECL(alDeleteEffects),
DECL(alIsEffect),
DECL(alEffecti),
DECL(alEffectiv),
DECL(alEffectf),
DECL(alEffectfv),
DECL(alGetEffecti),
DECL(alGetEffectiv),
DECL(alGetEffectf),
DECL(alGetEffectfv),
DECL(alGenAuxiliaryEffectSlots),
DECL(alDeleteAuxiliaryEffectSlots),
DECL(alIsAuxiliaryEffectSlot),
DECL(alAuxiliaryEffectSloti),
DECL(alAuxiliaryEffectSlotiv),
DECL(alAuxiliaryEffectSlotf),
DECL(alAuxiliaryEffectSlotfv),
DECL(alGetAuxiliaryEffectSloti),
DECL(alGetAuxiliaryEffectSlotiv),
DECL(alGetAuxiliaryEffectSlotf),
DECL(alGetAuxiliaryEffectSlotfv),
DECL(alDeferUpdatesSOFT),
DECL(alProcessUpdatesSOFT),
DECL(alSourcedSOFT),
DECL(alSource3dSOFT),
DECL(alSourcedvSOFT),
DECL(alGetSourcedSOFT),
DECL(alGetSource3dSOFT),
DECL(alGetSourcedvSOFT),
DECL(alSourcei64SOFT),
DECL(alSource3i64SOFT),
DECL(alSourcei64vSOFT),
DECL(alGetSourcei64SOFT),
DECL(alGetSource3i64SOFT),
DECL(alGetSourcei64vSOFT),
DECL(alGetStringiSOFT),
DECL(alBufferStorageSOFT),
DECL(alMapBufferSOFT),
DECL(alUnmapBufferSOFT),
DECL(alFlushMappedBufferSOFT),
DECL(alEventControlSOFT),
DECL(alEventCallbackSOFT),
DECL(alGetPointerSOFT),
DECL(alGetPointervSOFT),
DECL(alBufferCallbackSOFT),
DECL(alGetBufferPtrSOFT),
DECL(alGetBuffer3PtrSOFT),
DECL(alGetBufferPtrvSOFT),
};
#undef DECL
#define DECL(x) { #x, (x) }
constexpr struct {
const ALCchar *enumName;
ALCenum value;
} alcEnumerations[] = {
DECL(ALC_INVALID),
DECL(ALC_FALSE),
DECL(ALC_TRUE),
DECL(ALC_MAJOR_VERSION),
DECL(ALC_MINOR_VERSION),
DECL(ALC_ATTRIBUTES_SIZE),
DECL(ALC_ALL_ATTRIBUTES),
DECL(ALC_DEFAULT_DEVICE_SPECIFIER),
DECL(ALC_DEVICE_SPECIFIER),
DECL(ALC_ALL_DEVICES_SPECIFIER),
DECL(ALC_DEFAULT_ALL_DEVICES_SPECIFIER),
DECL(ALC_EXTENSIONS),
DECL(ALC_FREQUENCY),
DECL(ALC_REFRESH),
DECL(ALC_SYNC),
DECL(ALC_MONO_SOURCES),
DECL(ALC_STEREO_SOURCES),
DECL(ALC_CAPTURE_DEVICE_SPECIFIER),
DECL(ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER),
DECL(ALC_CAPTURE_SAMPLES),
DECL(ALC_CONNECTED),
DECL(ALC_EFX_MAJOR_VERSION),
DECL(ALC_EFX_MINOR_VERSION),
DECL(ALC_MAX_AUXILIARY_SENDS),
DECL(ALC_FORMAT_CHANNELS_SOFT),
DECL(ALC_FORMAT_TYPE_SOFT),
DECL(ALC_MONO_SOFT),
DECL(ALC_STEREO_SOFT),
DECL(ALC_QUAD_SOFT),
DECL(ALC_5POINT1_SOFT),
DECL(ALC_6POINT1_SOFT),
DECL(ALC_7POINT1_SOFT),
DECL(ALC_BFORMAT3D_SOFT),
DECL(ALC_BYTE_SOFT),
DECL(ALC_UNSIGNED_BYTE_SOFT),
DECL(ALC_SHORT_SOFT),
DECL(ALC_UNSIGNED_SHORT_SOFT),
DECL(ALC_INT_SOFT),
DECL(ALC_UNSIGNED_INT_SOFT),
DECL(ALC_FLOAT_SOFT),
DECL(ALC_HRTF_SOFT),
DECL(ALC_DONT_CARE_SOFT),
DECL(ALC_HRTF_STATUS_SOFT),
DECL(ALC_HRTF_DISABLED_SOFT),
DECL(ALC_HRTF_ENABLED_SOFT),
DECL(ALC_HRTF_DENIED_SOFT),
DECL(ALC_HRTF_REQUIRED_SOFT),
DECL(ALC_HRTF_HEADPHONES_DETECTED_SOFT),
DECL(ALC_HRTF_UNSUPPORTED_FORMAT_SOFT),
DECL(ALC_NUM_HRTF_SPECIFIERS_SOFT),
DECL(ALC_HRTF_SPECIFIER_SOFT),
DECL(ALC_HRTF_ID_SOFT),
DECL(ALC_AMBISONIC_LAYOUT_SOFT),
DECL(ALC_AMBISONIC_SCALING_SOFT),
DECL(ALC_AMBISONIC_ORDER_SOFT),
DECL(ALC_ACN_SOFT),
DECL(ALC_FUMA_SOFT),
DECL(ALC_N3D_SOFT),
DECL(ALC_SN3D_SOFT),
DECL(ALC_OUTPUT_LIMITER_SOFT),
DECL(ALC_NO_ERROR),
DECL(ALC_INVALID_DEVICE),
DECL(ALC_INVALID_CONTEXT),
DECL(ALC_INVALID_ENUM),
DECL(ALC_INVALID_VALUE),
DECL(ALC_OUT_OF_MEMORY),
DECL(AL_INVALID),
DECL(AL_NONE),
DECL(AL_FALSE),
DECL(AL_TRUE),
DECL(AL_SOURCE_RELATIVE),
DECL(AL_CONE_INNER_ANGLE),
DECL(AL_CONE_OUTER_ANGLE),
DECL(AL_PITCH),
DECL(AL_POSITION),
DECL(AL_DIRECTION),
DECL(AL_VELOCITY),
DECL(AL_LOOPING),
DECL(AL_BUFFER),
DECL(AL_GAIN),
DECL(AL_MIN_GAIN),
DECL(AL_MAX_GAIN),
DECL(AL_ORIENTATION),
DECL(AL_REFERENCE_DISTANCE),
DECL(AL_ROLLOFF_FACTOR),
DECL(AL_CONE_OUTER_GAIN),
DECL(AL_MAX_DISTANCE),
DECL(AL_SEC_OFFSET),
DECL(AL_SAMPLE_OFFSET),
DECL(AL_BYTE_OFFSET),
DECL(AL_SOURCE_TYPE),
DECL(AL_STATIC),
DECL(AL_STREAMING),
DECL(AL_UNDETERMINED),
DECL(AL_METERS_PER_UNIT),
DECL(AL_LOOP_POINTS_SOFT),
DECL(AL_DIRECT_CHANNELS_SOFT),
DECL(AL_DIRECT_FILTER),
DECL(AL_AUXILIARY_SEND_FILTER),
DECL(AL_AIR_ABSORPTION_FACTOR),
DECL(AL_ROOM_ROLLOFF_FACTOR),
DECL(AL_CONE_OUTER_GAINHF),
DECL(AL_DIRECT_FILTER_GAINHF_AUTO),
DECL(AL_AUXILIARY_SEND_FILTER_GAIN_AUTO),
DECL(AL_AUXILIARY_SEND_FILTER_GAINHF_AUTO),
DECL(AL_SOURCE_STATE),
DECL(AL_INITIAL),
DECL(AL_PLAYING),
DECL(AL_PAUSED),
DECL(AL_STOPPED),
DECL(AL_BUFFERS_QUEUED),
DECL(AL_BUFFERS_PROCESSED),
DECL(AL_FORMAT_MONO8),
DECL(AL_FORMAT_MONO16),
DECL(AL_FORMAT_MONO_FLOAT32),
DECL(AL_FORMAT_MONO_DOUBLE_EXT),
DECL(AL_FORMAT_STEREO8),
DECL(AL_FORMAT_STEREO16),
DECL(AL_FORMAT_STEREO_FLOAT32),
DECL(AL_FORMAT_STEREO_DOUBLE_EXT),
DECL(AL_FORMAT_MONO_IMA4),
DECL(AL_FORMAT_STEREO_IMA4),
DECL(AL_FORMAT_MONO_MSADPCM_SOFT),
DECL(AL_FORMAT_STEREO_MSADPCM_SOFT),
DECL(AL_FORMAT_QUAD8_LOKI),
DECL(AL_FORMAT_QUAD16_LOKI),
DECL(AL_FORMAT_QUAD8),
DECL(AL_FORMAT_QUAD16),
DECL(AL_FORMAT_QUAD32),
DECL(AL_FORMAT_51CHN8),
DECL(AL_FORMAT_51CHN16),
DECL(AL_FORMAT_51CHN32),
DECL(AL_FORMAT_61CHN8),
DECL(AL_FORMAT_61CHN16),
DECL(AL_FORMAT_61CHN32),
DECL(AL_FORMAT_71CHN8),
DECL(AL_FORMAT_71CHN16),
DECL(AL_FORMAT_71CHN32),
DECL(AL_FORMAT_REAR8),
DECL(AL_FORMAT_REAR16),
DECL(AL_FORMAT_REAR32),
DECL(AL_FORMAT_MONO_MULAW),
DECL(AL_FORMAT_MONO_MULAW_EXT),
DECL(AL_FORMAT_STEREO_MULAW),
DECL(AL_FORMAT_STEREO_MULAW_EXT),
DECL(AL_FORMAT_QUAD_MULAW),
DECL(AL_FORMAT_51CHN_MULAW),
DECL(AL_FORMAT_61CHN_MULAW),
DECL(AL_FORMAT_71CHN_MULAW),
DECL(AL_FORMAT_REAR_MULAW),
DECL(AL_FORMAT_MONO_ALAW_EXT),
DECL(AL_FORMAT_STEREO_ALAW_EXT),
DECL(AL_FORMAT_BFORMAT2D_8),
DECL(AL_FORMAT_BFORMAT2D_16),
DECL(AL_FORMAT_BFORMAT2D_FLOAT32),
DECL(AL_FORMAT_BFORMAT2D_MULAW),
DECL(AL_FORMAT_BFORMAT3D_8),
DECL(AL_FORMAT_BFORMAT3D_16),
DECL(AL_FORMAT_BFORMAT3D_FLOAT32),
DECL(AL_FORMAT_BFORMAT3D_MULAW),
DECL(AL_FREQUENCY),
DECL(AL_BITS),
DECL(AL_CHANNELS),
DECL(AL_SIZE),
DECL(AL_UNPACK_BLOCK_ALIGNMENT_SOFT),
DECL(AL_PACK_BLOCK_ALIGNMENT_SOFT),
DECL(AL_SOURCE_RADIUS),
DECL(AL_STEREO_ANGLES),
DECL(AL_UNUSED),
DECL(AL_PENDING),
DECL(AL_PROCESSED),
DECL(AL_NO_ERROR),
DECL(AL_INVALID_NAME),
DECL(AL_INVALID_ENUM),
DECL(AL_INVALID_VALUE),
DECL(AL_INVALID_OPERATION),
DECL(AL_OUT_OF_MEMORY),
DECL(AL_VENDOR),
DECL(AL_VERSION),
DECL(AL_RENDERER),
DECL(AL_EXTENSIONS),
DECL(AL_DOPPLER_FACTOR),
DECL(AL_DOPPLER_VELOCITY),
DECL(AL_DISTANCE_MODEL),
DECL(AL_SPEED_OF_SOUND),
DECL(AL_SOURCE_DISTANCE_MODEL),
DECL(AL_DEFERRED_UPDATES_SOFT),
DECL(AL_GAIN_LIMIT_SOFT),
DECL(AL_INVERSE_DISTANCE),
DECL(AL_INVERSE_DISTANCE_CLAMPED),
DECL(AL_LINEAR_DISTANCE),
DECL(AL_LINEAR_DISTANCE_CLAMPED),
DECL(AL_EXPONENT_DISTANCE),
DECL(AL_EXPONENT_DISTANCE_CLAMPED),
DECL(AL_FILTER_TYPE),
DECL(AL_FILTER_NULL),
DECL(AL_FILTER_LOWPASS),
DECL(AL_FILTER_HIGHPASS),
DECL(AL_FILTER_BANDPASS),
DECL(AL_LOWPASS_GAIN),
DECL(AL_LOWPASS_GAINHF),
DECL(AL_HIGHPASS_GAIN),
DECL(AL_HIGHPASS_GAINLF),
DECL(AL_BANDPASS_GAIN),
DECL(AL_BANDPASS_GAINHF),
DECL(AL_BANDPASS_GAINLF),
DECL(AL_EFFECT_TYPE),
DECL(AL_EFFECT_NULL),
DECL(AL_EFFECT_REVERB),
DECL(AL_EFFECT_EAXREVERB),
DECL(AL_EFFECT_CHORUS),
DECL(AL_EFFECT_DISTORTION),
DECL(AL_EFFECT_ECHO),
DECL(AL_EFFECT_FLANGER),
DECL(AL_EFFECT_PITCH_SHIFTER),
DECL(AL_EFFECT_FREQUENCY_SHIFTER),
DECL(AL_EFFECT_VOCAL_MORPHER),
DECL(AL_EFFECT_RING_MODULATOR),
DECL(AL_EFFECT_AUTOWAH),
DECL(AL_EFFECT_COMPRESSOR),
DECL(AL_EFFECT_EQUALIZER),
DECL(AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT),
DECL(AL_EFFECT_DEDICATED_DIALOGUE),
DECL(AL_EFFECTSLOT_EFFECT),
DECL(AL_EFFECTSLOT_GAIN),
DECL(AL_EFFECTSLOT_AUXILIARY_SEND_AUTO),
DECL(AL_EFFECTSLOT_NULL),
DECL(AL_EAXREVERB_DENSITY),
DECL(AL_EAXREVERB_DIFFUSION),
DECL(AL_EAXREVERB_GAIN),
DECL(AL_EAXREVERB_GAINHF),
DECL(AL_EAXREVERB_GAINLF),
DECL(AL_EAXREVERB_DECAY_TIME),
DECL(AL_EAXREVERB_DECAY_HFRATIO),
DECL(AL_EAXREVERB_DECAY_LFRATIO),
DECL(AL_EAXREVERB_REFLECTIONS_GAIN),
DECL(AL_EAXREVERB_REFLECTIONS_DELAY),
DECL(AL_EAXREVERB_REFLECTIONS_PAN),
DECL(AL_EAXREVERB_LATE_REVERB_GAIN),
DECL(AL_EAXREVERB_LATE_REVERB_DELAY),
DECL(AL_EAXREVERB_LATE_REVERB_PAN),
DECL(AL_EAXREVERB_ECHO_TIME),
DECL(AL_EAXREVERB_ECHO_DEPTH),
DECL(AL_EAXREVERB_MODULATION_TIME),
DECL(AL_EAXREVERB_MODULATION_DEPTH),
DECL(AL_EAXREVERB_AIR_ABSORPTION_GAINHF),
DECL(AL_EAXREVERB_HFREFERENCE),
DECL(AL_EAXREVERB_LFREFERENCE),
DECL(AL_EAXREVERB_ROOM_ROLLOFF_FACTOR),
DECL(AL_EAXREVERB_DECAY_HFLIMIT),
DECL(AL_REVERB_DENSITY),
DECL(AL_REVERB_DIFFUSION),
DECL(AL_REVERB_GAIN),
DECL(AL_REVERB_GAINHF),
DECL(AL_REVERB_DECAY_TIME),
DECL(AL_REVERB_DECAY_HFRATIO),
DECL(AL_REVERB_REFLECTIONS_GAIN),
DECL(AL_REVERB_REFLECTIONS_DELAY),
DECL(AL_REVERB_LATE_REVERB_GAIN),
DECL(AL_REVERB_LATE_REVERB_DELAY),
DECL(AL_REVERB_AIR_ABSORPTION_GAINHF),
DECL(AL_REVERB_ROOM_ROLLOFF_FACTOR),
DECL(AL_REVERB_DECAY_HFLIMIT),
DECL(AL_CHORUS_WAVEFORM),
DECL(AL_CHORUS_PHASE),
DECL(AL_CHORUS_RATE),
DECL(AL_CHORUS_DEPTH),
DECL(AL_CHORUS_FEEDBACK),
DECL(AL_CHORUS_DELAY),
DECL(AL_DISTORTION_EDGE),
DECL(AL_DISTORTION_GAIN),
DECL(AL_DISTORTION_LOWPASS_CUTOFF),
DECL(AL_DISTORTION_EQCENTER),
DECL(AL_DISTORTION_EQBANDWIDTH),
DECL(AL_ECHO_DELAY),
DECL(AL_ECHO_LRDELAY),
DECL(AL_ECHO_DAMPING),
DECL(AL_ECHO_FEEDBACK),
DECL(AL_ECHO_SPREAD),
DECL(AL_FLANGER_WAVEFORM),
DECL(AL_FLANGER_PHASE),
DECL(AL_FLANGER_RATE),
DECL(AL_FLANGER_DEPTH),
DECL(AL_FLANGER_FEEDBACK),
DECL(AL_FLANGER_DELAY),
DECL(AL_FREQUENCY_SHIFTER_FREQUENCY),
DECL(AL_FREQUENCY_SHIFTER_LEFT_DIRECTION),
DECL(AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION),
DECL(AL_RING_MODULATOR_FREQUENCY),
DECL(AL_RING_MODULATOR_HIGHPASS_CUTOFF),
DECL(AL_RING_MODULATOR_WAVEFORM),
DECL(AL_PITCH_SHIFTER_COARSE_TUNE),
DECL(AL_PITCH_SHIFTER_FINE_TUNE),
DECL(AL_COMPRESSOR_ONOFF),
DECL(AL_EQUALIZER_LOW_GAIN),
DECL(AL_EQUALIZER_LOW_CUTOFF),
DECL(AL_EQUALIZER_MID1_GAIN),
DECL(AL_EQUALIZER_MID1_CENTER),
DECL(AL_EQUALIZER_MID1_WIDTH),
DECL(AL_EQUALIZER_MID2_GAIN),
DECL(AL_EQUALIZER_MID2_CENTER),
DECL(AL_EQUALIZER_MID2_WIDTH),
DECL(AL_EQUALIZER_HIGH_GAIN),
DECL(AL_EQUALIZER_HIGH_CUTOFF),
DECL(AL_DEDICATED_GAIN),
DECL(AL_AUTOWAH_ATTACK_TIME),
DECL(AL_AUTOWAH_RELEASE_TIME),
DECL(AL_AUTOWAH_RESONANCE),
DECL(AL_AUTOWAH_PEAK_GAIN),
DECL(AL_VOCAL_MORPHER_PHONEMEA),
DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING),
DECL(AL_VOCAL_MORPHER_PHONEMEB),
DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING),
DECL(AL_VOCAL_MORPHER_WAVEFORM),
DECL(AL_VOCAL_MORPHER_RATE),
DECL(AL_NUM_RESAMPLERS_SOFT),
DECL(AL_DEFAULT_RESAMPLER_SOFT),
DECL(AL_SOURCE_RESAMPLER_SOFT),
DECL(AL_RESAMPLER_NAME_SOFT),
DECL(AL_SOURCE_SPATIALIZE_SOFT),
DECL(AL_AUTO_SOFT),
DECL(AL_MAP_READ_BIT_SOFT),
DECL(AL_MAP_WRITE_BIT_SOFT),
DECL(AL_MAP_PERSISTENT_BIT_SOFT),
DECL(AL_PRESERVE_DATA_BIT_SOFT),
DECL(AL_EVENT_CALLBACK_FUNCTION_SOFT),
DECL(AL_EVENT_CALLBACK_USER_PARAM_SOFT),
DECL(AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT),
DECL(AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT),
DECL(AL_EVENT_TYPE_ERROR_SOFT),
DECL(AL_EVENT_TYPE_PERFORMANCE_SOFT),
DECL(AL_EVENT_TYPE_DEPRECATED_SOFT),
DECL(AL_DROP_UNMATCHED_SOFT),
DECL(AL_REMIX_UNMATCHED_SOFT),
DECL(AL_AMBISONIC_LAYOUT_SOFT),
DECL(AL_AMBISONIC_SCALING_SOFT),
DECL(AL_FUMA_SOFT),
DECL(AL_ACN_SOFT),
DECL(AL_SN3D_SOFT),
DECL(AL_N3D_SOFT),
DECL(AL_BUFFER_CALLBACK_FUNCTION_SOFT),
DECL(AL_BUFFER_CALLBACK_USER_PARAM_SOFT),
DECL(AL_UNPACK_AMBISONIC_ORDER_SOFT),
};
#undef DECL
constexpr ALCchar alcNoError[] = "No Error";
constexpr ALCchar alcErrInvalidDevice[] = "Invalid Device";
constexpr ALCchar alcErrInvalidContext[] = "Invalid Context";
constexpr ALCchar alcErrInvalidEnum[] = "Invalid Enum";
constexpr ALCchar alcErrInvalidValue[] = "Invalid Value";
constexpr ALCchar alcErrOutOfMemory[] = "Out of Memory";
/************************************************
* Global variables
************************************************/
/* Enumerated device names */
constexpr ALCchar alcDefaultName[] = "OpenAL Soft\0";
std::string alcAllDevicesList;
std::string alcCaptureDeviceList;
/* Default is always the first in the list */
al::string alcDefaultAllDevicesSpecifier;
al::string alcCaptureDefaultDeviceSpecifier;
/* Default context extensions */
constexpr ALchar alExtList[] =
"AL_EXT_ALAW "
"AL_EXT_BFORMAT "
"AL_EXT_DOUBLE "
"AL_EXT_EXPONENT_DISTANCE "
"AL_EXT_FLOAT32 "
"AL_EXT_IMA4 "
"AL_EXT_LINEAR_DISTANCE "
"AL_EXT_MCFORMATS "
"AL_EXT_MULAW "
"AL_EXT_MULAW_BFORMAT "
"AL_EXT_MULAW_MCFORMATS "
"AL_EXT_OFFSET "
"AL_EXT_source_distance_model "
"AL_EXT_SOURCE_RADIUS "
"AL_EXT_STEREO_ANGLES "
"AL_LOKI_quadriphonic "
"AL_SOFT_bformat_ex "
"AL_SOFTX_bformat_hoa "
"AL_SOFT_block_alignment "
"AL_SOFTX_callback_buffer "
"AL_SOFT_deferred_updates "
"AL_SOFT_direct_channels "
"AL_SOFT_direct_channels_remix "
"AL_SOFTX_effect_target "
"AL_SOFTX_events "
"AL_SOFTX_filter_gain_ex "
"AL_SOFT_gain_clamp_ex "
"AL_SOFT_loop_points "
"AL_SOFTX_map_buffer "
"AL_SOFT_MSADPCM "
"AL_SOFT_source_latency "
"AL_SOFT_source_length "
"AL_SOFT_source_resampler "
"AL_SOFT_source_spatialize";
std::atomic<ALCenum> LastNullDeviceError{ALC_NO_ERROR};
/* Thread-local current context. The handling may look a little obtuse, but
* it's designed this way to avoid a bug with 32-bit GCC/MinGW, which causes
* thread-local object destructors to get a junk 'this' pointer. This method
* has the benefit of making LocalContext access more efficient since it's a
* a plain pointer, with the ThreadContext object used to check it at thread
* exit (and given no data fields, 'this' being junk is inconsequential since
* it's never accessed).
*/
thread_local ALCcontext *LocalContext{nullptr};
class ThreadCtx {
public:
~ThreadCtx()
{
if(ALCcontext *ctx{LocalContext})
{
const bool result{ctx->releaseIfNoDelete()};
ERR("Context %p current for thread being destroyed%s!\n",
decltype(std::declval<void*>()){ctx}, result ? "" : ", leak detected");
}
}
void set(ALCcontext *ctx) const noexcept { LocalContext = ctx; }
};
thread_local ThreadCtx ThreadContext;
/* Process-wide current context */
std::atomic<ALCcontext*> GlobalContext{nullptr};
/* Flag to trap ALC device errors */
bool TrapALCError{false};
/* One-time configuration init control */
std::once_flag alc_config_once{};
/* Default effect that applies to sources that don't have an effect on send 0 */
ALeffect DefaultEffect;
/* Flag to specify if alcSuspendContext/alcProcessContext should defer/process
* updates.
*/
bool SuspendDefers{true};
/* Initial seed for dithering. */
constexpr ALuint DitherRNGSeed{22222u};
/************************************************
* ALC information
************************************************/
constexpr ALCchar alcNoDeviceExtList[] =
"ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXT_thread_local_context "
"ALC_SOFT_loopback";
constexpr ALCchar alcExtensionList[] =
"ALC_ENUMERATE_ALL_EXT "
"ALC_ENUMERATION_EXT "
"ALC_EXT_CAPTURE "
"ALC_EXT_DEDICATED "
"ALC_EXT_disconnect "
"ALC_EXT_EFX "
"ALC_EXT_thread_local_context "
"ALC_SOFT_device_clock "
"ALC_SOFT_HRTF "
"ALC_SOFT_loopback "
"ALC_SOFT_output_limiter "
"ALC_SOFT_pause_device";
constexpr int alcMajorVersion{1};
constexpr int alcMinorVersion{1};
constexpr int alcEFXMajorVersion{1};
constexpr int alcEFXMinorVersion{0};
/* To avoid extraneous allocations, a 0-sized FlexArray<ALCcontext*> is defined
* globally as a sharable object. MSVC warns that a zero-sized array will have
* zero objects here, so silence that.
*/
DIAGNOSTIC_PUSH
msc_pragma(warning(disable : 4815))
al::FlexArray<ALCcontext*> EmptyContextArray{0u};
DIAGNOSTIC_POP
using DeviceRef = al::intrusive_ptr<ALCdevice>;
/************************************************
* Device lists
************************************************/
al::vector<ALCdevice*> DeviceList;
al::vector<ALCcontext*> ContextList;
std::recursive_mutex ListLock;
void alc_initconfig(void)
{
if(auto loglevel = al::getenv("ALSOFT_LOGLEVEL"))
{
long lvl = strtol(loglevel->c_str(), nullptr, 0);
if(lvl >= NoLog && lvl <= LogRef)
gLogLevel = static_cast<LogLevel>(lvl);
}
#ifdef _WIN32
if(const auto logfile = al::getenv(L"ALSOFT_LOGFILE"))
{
FILE *logf{_wfopen(logfile->c_str(), L"wt")};
if(logf) gLogFile = logf;
else
{
auto u8name = wstr_to_utf8(logfile->c_str());
ERR("Failed to open log file '%s'\n", u8name.c_str());
}
}
#else
if(const auto logfile = al::getenv("ALSOFT_LOGFILE"))
{
FILE *logf{fopen(logfile->c_str(), "wt")};
if(logf) gLogFile = logf;
else ERR("Failed to open log file '%s'\n", logfile->c_str());
}
#endif
TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH,
ALSOFT_GIT_BRANCH);
{
al::string names;
if(al::size(BackendList) < 1)
names = "(none)";
else
{
const al::span<const BackendInfo> infos{BackendList};
names = infos[0].name;
for(const auto &backend : infos.subspan<1>())
{
names += ", ";
names += backend.name;
}
}
TRACE("Supported backends: %s\n", names.c_str());
}
ReadALConfig();
if(auto suspendmode = al::getenv("__ALSOFT_SUSPEND_CONTEXT"))
{
if(al::strcasecmp(suspendmode->c_str(), "ignore") == 0)
{
SuspendDefers = false;
TRACE("Selected context suspend behavior, \"ignore\"\n");
}
else
ERR("Unhandled context suspend behavior setting: \"%s\"\n", suspendmode->c_str());
}
int capfilter{0};
#if defined(HAVE_SSE4_1)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1;
#elif defined(HAVE_SSE3)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3;
#elif defined(HAVE_SSE2)
capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2;
#elif defined(HAVE_SSE)
capfilter |= CPU_CAP_SSE;
#endif
#ifdef HAVE_NEON
capfilter |= CPU_CAP_NEON;
#endif
if(auto cpuopt = ConfigValueStr(nullptr, nullptr, "disable-cpu-exts"))
{
const char *str{cpuopt->c_str()};
if(al::strcasecmp(str, "all") == 0)
capfilter = 0;
else
{
const char *next = str;
do {
str = next;
while(isspace(str[0]))
str++;
next = strchr(str, ',');
if(!str[0] || str[0] == ',')
continue;
size_t len{next ? static_cast<size_t>(next-str) : strlen(str)};
while(len > 0 && isspace(str[len-1]))
len--;
if(len == 3 && al::strncasecmp(str, "sse", len) == 0)
capfilter &= ~CPU_CAP_SSE;
else if(len == 4 && al::strncasecmp(str, "sse2", len) == 0)
capfilter &= ~CPU_CAP_SSE2;
else if(len == 4 && al::strncasecmp(str, "sse3", len) == 0)
capfilter &= ~CPU_CAP_SSE3;
else if(len == 6 && al::strncasecmp(str, "sse4.1", len) == 0)
capfilter &= ~CPU_CAP_SSE4_1;
else if(len == 4 && al::strncasecmp(str, "neon", len) == 0)
capfilter &= ~CPU_CAP_NEON;
else
WARN("Invalid CPU extension \"%s\"\n", str);
} while(next++);
}
}
FillCPUCaps(capfilter);
if(auto priopt = ConfigValueInt(nullptr, nullptr, "rt-prio"))
RTPrioLevel = *priopt;
aluInit();
aluInitMixer();
auto traperr = al::getenv("ALSOFT_TRAP_ERROR");
if(traperr && (al::strcasecmp(traperr->c_str(), "true") == 0
|| std::strtol(traperr->c_str(), nullptr, 0) == 1))
{
TrapALError = true;
TrapALCError = true;
}
else
{
traperr = al::getenv("ALSOFT_TRAP_AL_ERROR");
if(traperr)
TrapALError = al::strcasecmp(traperr->c_str(), "true") == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALError = !!GetConfigValueBool(nullptr, nullptr, "trap-al-error", false);
traperr = al::getenv("ALSOFT_TRAP_ALC_ERROR");
if(traperr)
TrapALCError = al::strcasecmp(traperr->c_str(), "true") == 0
|| strtol(traperr->c_str(), nullptr, 0) == 1;
else
TrapALCError = !!GetConfigValueBool(nullptr, nullptr, "trap-alc-error", false);
}
if(auto boostopt = ConfigValueFloat(nullptr, "reverb", "boost"))
{
const float valf{std::isfinite(*boostopt) ? clampf(*boostopt, -24.0f, 24.0f) : 0.0f};
ReverbBoost *= std::pow(10.0f, valf / 20.0f);
}
auto BackendListEnd = std::end(BackendList);
auto devopt = al::getenv("ALSOFT_DRIVERS");
if(devopt || (devopt=ConfigValueStr(nullptr, nullptr, "drivers")))
{
auto backendlist_cur = std::begin(BackendList);
bool endlist{true};
const char *next{devopt->c_str()};
do {
const char *devs{next};
while(isspace(devs[0]))
devs++;
next = strchr(devs, ',');
const bool delitem{devs[0] == '-'};
if(devs[0] == '-') devs++;
if(!devs[0] || devs[0] == ',')
{
endlist = false;
continue;
}
endlist = true;
size_t len{next ? (static_cast<size_t>(next-devs)) : strlen(devs)};
while(len > 0 && isspace(devs[len-1])) --len;
#ifdef HAVE_WASAPI
/* HACK: For backwards compatibility, convert backend references of
* mmdevapi to wasapi. This should eventually be removed.
*/
if(len == 8 && strncmp(devs, "mmdevapi", len) == 0)
{
devs = "wasapi";
len = 6;
}
#endif
auto find_backend = [devs,len](const BackendInfo &backend) -> bool
{ return len == strlen(backend.name) && strncmp(backend.name, devs, len) == 0; };
auto this_backend = std::find_if(std::begin(BackendList), BackendListEnd,
find_backend);
if(this_backend == BackendListEnd)
continue;
if(delitem)
BackendListEnd = std::move(this_backend+1, BackendListEnd, this_backend);
else
backendlist_cur = std::rotate(backendlist_cur, this_backend, this_backend+1);
} while(next++);
if(endlist)
BackendListEnd = backendlist_cur;
}
auto init_backend = [](BackendInfo &backend) -> void
{
if(PlaybackFactory && CaptureFactory)
return;
BackendFactory &factory = backend.getFactory();
if(!factory.init())
{
WARN("Failed to initialize backend \"%s\"\n", backend.name);
return;
}
TRACE("Initialized backend \"%s\"\n", backend.name);
if(!PlaybackFactory && factory.querySupport(BackendType::Playback))
{
PlaybackFactory = &factory;
TRACE("Added \"%s\" for playback\n", backend.name);
}
if(!CaptureFactory && factory.querySupport(BackendType::Capture))
{
CaptureFactory = &factory;
TRACE("Added \"%s\" for capture\n", backend.name);
}
};
std::for_each(std::begin(BackendList), BackendListEnd, init_backend);
LoopbackBackendFactory::getFactory().init();
if(!PlaybackFactory)
WARN("No playback backend available!\n");
if(!CaptureFactory)
WARN("No capture backend available!\n");
if(auto exclopt = ConfigValueStr(nullptr, nullptr, "excludefx"))
{
const char *next{exclopt->c_str()};
do {
const char *str{next};
next = strchr(str, ',');
if(!str[0] || next == str)
continue;
size_t len{next ? static_cast<size_t>(next-str) : strlen(str)};
for(const EffectList &effectitem : gEffectList)
{
if(len == strlen(effectitem.name) &&
strncmp(effectitem.name, str, len) == 0)
DisabledEffects[effectitem.type] = true;
}
} while(next++);
}
InitEffect(&DefaultEffect);
auto defrevopt = al::getenv("ALSOFT_DEFAULT_REVERB");
if(defrevopt || (defrevopt=ConfigValueStr(nullptr, nullptr, "default-reverb")))
LoadReverbPreset(defrevopt->c_str(), &DefaultEffect);
}
#define DO_INITCONFIG() std::call_once(alc_config_once, [](){alc_initconfig();})
/************************************************
* Device enumeration
************************************************/
void ProbeAllDevicesList()
{
DO_INITCONFIG();
std::lock_guard<std::recursive_mutex> _{ListLock};
if(!PlaybackFactory)
decltype(alcAllDevicesList){}.swap(alcAllDevicesList);
else
{
std::string names{PlaybackFactory->probe(BackendType::Playback)};
if(names.empty()) names += '\0';
names.swap(alcAllDevicesList);
}
}
void ProbeCaptureDeviceList()
{
DO_INITCONFIG();
std::lock_guard<std::recursive_mutex> _{ListLock};
if(!CaptureFactory)
decltype(alcCaptureDeviceList){}.swap(alcCaptureDeviceList);
else
{
std::string names{CaptureFactory->probe(BackendType::Capture)};
if(names.empty()) names += '\0';
names.swap(alcCaptureDeviceList);
}
}
} // namespace
/* Mixing thread piority level */
int RTPrioLevel{1};
FILE *gLogFile{stderr};
#ifdef _DEBUG
LogLevel gLogLevel{LogWarning};
#else
LogLevel gLogLevel{LogError};
#endif
/************************************************
* Library initialization
************************************************/
#if defined(_WIN32) && !defined(AL_LIBTYPE_STATIC)
BOOL APIENTRY DllMain(HINSTANCE module, DWORD reason, LPVOID /*reserved*/)
{
switch(reason)
{
case DLL_PROCESS_ATTACH:
/* Pin the DLL so we won't get unloaded until the process terminates */
GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
reinterpret_cast<WCHAR*>(module), &module);
break;
}
return TRUE;
}
#endif
/************************************************
* Device format information
************************************************/
const ALCchar *DevFmtTypeString(DevFmtType type) noexcept
{
switch(type)
{
case DevFmtByte: return "Int8";
case DevFmtUByte: return "UInt8";
case DevFmtShort: return "Int16";
case DevFmtUShort: return "UInt16";
case DevFmtInt: return "Int32";
case DevFmtUInt: return "UInt32";
case DevFmtFloat: return "Float32";
}
return "(unknown type)";
}
const ALCchar *DevFmtChannelsString(DevFmtChannels chans) noexcept
{
switch(chans)
{
case DevFmtMono: return "Mono";
case DevFmtStereo: return "Stereo";
case DevFmtQuad: return "Quadraphonic";
case DevFmtX51: return "5.1 Surround";
case DevFmtX51Rear: return "5.1 Surround (Rear)";
case DevFmtX61: return "6.1 Surround";
case DevFmtX71: return "7.1 Surround";
case DevFmtAmbi3D: return "Ambisonic 3D";
}
return "(unknown channels)";
}
ALuint BytesFromDevFmt(DevFmtType type) noexcept
{
switch(type)
{
case DevFmtByte: return sizeof(int8_t);
case DevFmtUByte: return sizeof(uint8_t);
case DevFmtShort: return sizeof(int16_t);
case DevFmtUShort: return sizeof(uint16_t);
case DevFmtInt: return sizeof(int32_t);
case DevFmtUInt: return sizeof(uint32_t);
case DevFmtFloat: return sizeof(float);
}
return 0;
}
ALuint ChannelsFromDevFmt(DevFmtChannels chans, ALuint ambiorder) noexcept
{
switch(chans)
{
case DevFmtMono: return 1;
case DevFmtStereo: return 2;
case DevFmtQuad: return 4;
case DevFmtX51: return 6;
case DevFmtX51Rear: return 6;
case DevFmtX61: return 7;
case DevFmtX71: return 8;
case DevFmtAmbi3D: return (ambiorder+1) * (ambiorder+1);
}
return 0;
}
namespace {
struct DevFmtPair { DevFmtChannels chans; DevFmtType type; };
al::optional<DevFmtPair> DecomposeDevFormat(ALenum format)
{
static const struct {
ALenum format;
DevFmtChannels channels;
DevFmtType type;
} list[] = {
{ AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte },
{ AL_FORMAT_MONO16, DevFmtMono, DevFmtShort },
{ AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat },
{ AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte },
{ AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort },
{ AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat },
{ AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte },
{ AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort },
{ AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat },
{ AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte },
{ AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort },
{ AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat },
{ AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte },
{ AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort },
{ AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat },
{ AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte },
{ AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort },
{ AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat },
};
for(const auto &item : list)
{
if(item.format == format)
return al::make_optional(DevFmtPair{item.channels, item.type});
}
return al::nullopt;
}
bool IsValidALCType(ALCenum type)
{
switch(type)
{
case ALC_BYTE_SOFT:
case ALC_UNSIGNED_BYTE_SOFT:
case ALC_SHORT_SOFT:
case ALC_UNSIGNED_SHORT_SOFT:
case ALC_INT_SOFT:
case ALC_UNSIGNED_INT_SOFT:
case ALC_FLOAT_SOFT:
return true;
}
return false;
}
bool IsValidALCChannels(ALCenum channels)
{
switch(channels)
{
case ALC_MONO_SOFT:
case ALC_STEREO_SOFT:
case ALC_QUAD_SOFT:
case ALC_5POINT1_SOFT:
case ALC_6POINT1_SOFT:
case ALC_7POINT1_SOFT:
case ALC_BFORMAT3D_SOFT:
return true;
}
return false;
}
bool IsValidAmbiLayout(ALCenum layout)
{
switch(layout)
{
case ALC_ACN_SOFT:
case ALC_FUMA_SOFT:
return true;
}
return false;
}
bool IsValidAmbiScaling(ALCenum scaling)
{
switch(scaling)
{
case ALC_N3D_SOFT:
case ALC_SN3D_SOFT:
case ALC_FUMA_SOFT:
return true;
}
return false;
}
/* Downmixing channel arrays, to map the given format's missing channels to
* existing ones. Based on Wine's DSound downmix values, which are based on
* PulseAudio's.
*/
const std::array<InputRemixMap,7> MonoDownmix{{
{ FrontLeft, {{{FrontCenter, 0.5f}, {LFE, 0.0f}}} },
{ FrontRight, {{{FrontCenter, 0.5f}, {LFE, 0.0f}}} },
{ SideLeft, {{{FrontCenter, 0.5f/9.0f}, {LFE, 0.0f}}} },
{ SideRight, {{{FrontCenter, 0.5f/9.0f}, {LFE, 0.0f}}} },
{ BackLeft, {{{FrontCenter, 0.5f/9.0f}, {LFE, 0.0f}}} },
{ BackRight, {{{FrontCenter, 0.5f/9.0f}, {LFE, 0.0f}}} },
{ BackCenter, {{{FrontCenter, 1.0f/9.0f}, {LFE, 0.0f}}} },
}};
const std::array<InputRemixMap,6> StereoDownmix{{
{ FrontCenter, {{{FrontLeft, 0.5f}, {FrontRight, 0.5f}}} },
{ SideLeft, {{{FrontLeft, 1.0f/9.0f}, {FrontRight, 0.0f}}} },
{ SideRight, {{{FrontLeft, 0.0f}, {FrontRight, 1.0f/9.0f}}} },
{ BackLeft, {{{FrontLeft, 1.0f/9.0f}, {FrontRight, 0.0f}}} },
{ BackRight, {{{FrontLeft, 0.0f}, {FrontRight, 1.0f/9.0f}}} },
{ BackCenter, {{{FrontLeft, 0.5f/9.0f}, {FrontRight, 0.5f/9.0f}}} },
}};
const std::array<InputRemixMap,4> QuadDownmix{{
{ FrontCenter, {{{FrontLeft, 0.5f}, {FrontRight, 0.5f}}} },
{ SideLeft, {{{FrontLeft, 0.5f}, {BackLeft, 0.5f}}} },
{ SideRight, {{{FrontRight, 0.5f}, {BackRight, 0.5f}}} },
{ BackCenter, {{{BackLeft, 0.5f}, {BackRight, 0.5f}}} },
}};
const std::array<InputRemixMap,3> X51Downmix{{
{ BackLeft, {{{SideLeft, 1.0f}, {SideRight, 0.0f}}} },
{ BackRight, {{{SideLeft, 0.0f}, {SideRight, 1.0f}}} },
{ BackCenter, {{{SideLeft, 0.5f}, {SideRight, 0.5f}}} },
}};
const std::array<InputRemixMap,3> X51RearDownmix{{
{ SideLeft, {{{BackLeft, 1.0f}, {BackRight, 0.0f}}} },
{ SideRight, {{{BackLeft, 0.0f}, {BackRight, 1.0f}}} },
{ BackCenter, {{{BackLeft, 0.5f}, {BackRight, 0.5f}}} },
}};
const std::array<InputRemixMap,2> X61Downmix{{
{ BackLeft, {{{BackCenter, 0.5f}, {SideLeft, 0.5f}}} },
{ BackRight, {{{BackCenter, 0.5f}, {SideRight, 0.5f}}} },
}};
const std::array<InputRemixMap,1> X71Downmix{{
{ BackCenter, {{{BackLeft, 0.5f}, {BackRight, 0.5f}}} },
}};
} // namespace
/************************************************
* Miscellaneous ALC helpers
************************************************/
void ALCcontext::processUpdates()
{
std::lock_guard<std::mutex> _{mPropLock};
if(mDeferUpdates.exchange(false, std::memory_order_acq_rel))
{
/* Tell the mixer to stop applying updates, then wait for any active
* updating to finish, before providing updates.
*/
mHoldUpdates.store(true, std::memory_order_release);
while((mUpdateCount.load(std::memory_order_acquire)&1) != 0) {
/* busy-wait */
}
if(!mPropsClean.test_and_set(std::memory_order_acq_rel))
UpdateContextProps(this);
if(!mListener.PropsClean.test_and_set(std::memory_order_acq_rel))
UpdateListenerProps(this);
UpdateAllEffectSlotProps(this);
UpdateAllSourceProps(this);
/* Now with all updates declared, let the mixer continue applying them
* so they all happen at once.
*/
mHoldUpdates.store(false, std::memory_order_release);
}
}
void ALCcontext::allocVoiceChanges(size_t addcount)
{
constexpr size_t clustersize{128};
/* Convert element count to cluster count. */
addcount = (addcount+(clustersize-1)) / clustersize;
while(addcount)
{
VoiceChangeCluster cluster{std::make_unique<VoiceChange[]>(clustersize)};
for(size_t i{1};i < clustersize;++i)
cluster[i-1].mNext.store(std::addressof(cluster[i]), std::memory_order_relaxed);
cluster[clustersize-1].mNext.store(mVoiceChangeTail, std::memory_order_relaxed);
mVoiceChangeClusters.emplace_back(std::move(cluster));
mVoiceChangeTail = mVoiceChangeClusters.back().get();
--addcount;
}
}
void ALCcontext::allocVoices(size_t addcount)
{
constexpr size_t clustersize{32};
/* Convert element count to cluster count. */
addcount = (addcount+(clustersize-1)) / clustersize;
if(addcount >= std::numeric_limits<int>::max()/clustersize - mVoiceClusters.size())
throw std::runtime_error{"Allocating too many voices"};
const size_t totalcount{(mVoiceClusters.size()+addcount) * clustersize};
TRACE("Increasing allocated voices to %zu\n", totalcount);
auto newarray = VoiceArray::Create(totalcount);
while(addcount)
{
mVoiceClusters.emplace_back(std::make_unique<Voice[]>(clustersize));
--addcount;
}
auto voice_iter = newarray->begin();
for(VoiceCluster &cluster : mVoiceClusters)
{
for(size_t i{0};i < clustersize;++i)
*(voice_iter++) = &cluster[i];
}
if(auto *oldvoices = mVoices.exchange(newarray.release(), std::memory_order_acq_rel))
{
mDevice->waitForMix();
delete oldvoices;
}
}
/** Stores the latest ALC device error. */
static void alcSetError(ALCdevice *device, ALCenum errorCode)
{
WARN("Error generated on device %p, code 0x%04x\n", decltype(std::declval<void*>()){device},
errorCode);
if(TrapALCError)
{
#ifdef _WIN32
/* DebugBreak() will cause an exception if there is no debugger */
if(IsDebuggerPresent())
DebugBreak();
#elif defined(SIGTRAP)
raise(SIGTRAP);
#endif
}
if(device)
device->LastError.store(errorCode);
else
LastNullDeviceError.store(errorCode);
}
static std::unique_ptr<Compressor> CreateDeviceLimiter(const ALCdevice *device, const float threshold)
{
constexpr bool AutoKnee{true};
constexpr bool AutoAttack{true};
constexpr bool AutoRelease{true};
constexpr bool AutoPostGain{true};
constexpr bool AutoDeclip{true};
constexpr float LookAheadTime{0.001f};
constexpr float HoldTime{0.002f};
constexpr float PreGainDb{0.0f};
constexpr float PostGainDb{0.0f};
constexpr float Ratio{std::numeric_limits<float>::infinity()};
constexpr float KneeDb{0.0f};
constexpr float AttackTime{0.02f};
constexpr float ReleaseTime{0.2f};
return Compressor::Create(device->RealOut.Buffer.size(), static_cast<float>(device->Frequency),
AutoKnee, AutoAttack, AutoRelease, AutoPostGain, AutoDeclip, LookAheadTime, HoldTime,
PreGainDb, PostGainDb, threshold, Ratio, KneeDb, AttackTime, ReleaseTime);
}
/**
* Updates the device's base clock time with however many samples have been
* done. This is used so frequency changes on the device don't cause the time
* to jump forward or back. Must not be called while the device is running/
* mixing.
*/
static inline void UpdateClockBase(ALCdevice *device)
{
IncrementRef(device->MixCount);
device->ClockBase += nanoseconds{seconds{device->SamplesDone}} / device->Frequency;
device->SamplesDone = 0;
IncrementRef(device->MixCount);
}
/**
* Updates device parameters according to the attribute list (caller is
* responsible for holding the list lock).
*/
static ALCenum UpdateDeviceParams(ALCdevice *device, const int *attrList)
{
HrtfRequestMode hrtf_userreq{Hrtf_Default};
HrtfRequestMode hrtf_appreq{Hrtf_Default};
ALCenum gainLimiter{device->LimiterState};
ALCuint new_sends{device->NumAuxSends};
DevFmtChannels oldChans;
DevFmtType oldType;
ALCsizei hrtf_id{-1};
ALCuint oldFreq;
if((!attrList || !attrList[0]) && device->Type == Loopback)
{
WARN("Missing attributes for loopback device\n");
return ALC_INVALID_VALUE;
}
// Check for attributes
if(attrList && attrList[0])
{
ALCenum alayout{AL_NONE};
ALCenum ascale{AL_NONE};
ALCenum schans{AL_NONE};
ALCenum stype{AL_NONE};
ALCsizei attrIdx{0};
ALCuint aorder{0};
ALCuint freq{0u};
ALuint numMono{device->NumMonoSources};
ALuint numStereo{device->NumStereoSources};
ALuint numSends{device->NumAuxSends};
#define TRACE_ATTR(a, v) TRACE("%s = %d\n", #a, v)
while(attrList[attrIdx])
{
switch(attrList[attrIdx])
{
case ALC_FORMAT_CHANNELS_SOFT:
schans = attrList[attrIdx + 1];
TRACE_ATTR(ALC_FORMAT_CHANNELS_SOFT, schans);
break;
case ALC_FORMAT_TYPE_SOFT:
stype = attrList[attrIdx + 1];
TRACE_ATTR(ALC_FORMAT_TYPE_SOFT, stype);
break;
case ALC_FREQUENCY:
freq = static_cast<ALuint>(attrList[attrIdx + 1]);
TRACE_ATTR(ALC_FREQUENCY, freq);
break;
case ALC_AMBISONIC_LAYOUT_SOFT:
alayout = attrList[attrIdx + 1];
TRACE_ATTR(ALC_AMBISONIC_LAYOUT_SOFT, alayout);
break;
case ALC_AMBISONIC_SCALING_SOFT:
ascale = attrList[attrIdx + 1];
TRACE_ATTR(ALC_AMBISONIC_SCALING_SOFT, ascale);
break;
case ALC_AMBISONIC_ORDER_SOFT:
aorder = static_cast<ALuint>(attrList[attrIdx + 1]);
TRACE_ATTR(ALC_AMBISONIC_ORDER_SOFT, aorder);
break;
case ALC_MONO_SOURCES:
numMono = static_cast<ALuint>(attrList[attrIdx + 1]);
TRACE_ATTR(ALC_MONO_SOURCES, numMono);
if(numMono > INT_MAX) numMono = 0;
break;
case ALC_STEREO_SOURCES:
numStereo = static_cast<ALuint>(attrList[attrIdx + 1]);
TRACE_ATTR(ALC_STEREO_SOURCES, numStereo);
if(numStereo > INT_MAX) numStereo = 0;
break;
case ALC_MAX_AUXILIARY_SENDS:
numSends = static_cast<ALuint>(attrList[attrIdx + 1]);
TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends);
if(numSends > INT_MAX) numSends = 0;
else numSends = minu(numSends, MAX_SENDS);
break;
case ALC_HRTF_SOFT:
TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]);
if(attrList[attrIdx + 1] == ALC_FALSE)
hrtf_appreq = Hrtf_Disable;
else if(attrList[attrIdx + 1] == ALC_TRUE)
hrtf_appreq = Hrtf_Enable;
else
hrtf_appreq = Hrtf_Default;
break;
case ALC_HRTF_ID_SOFT:
hrtf_id = attrList[attrIdx + 1];
TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id);
break;
case ALC_OUTPUT_LIMITER_SOFT:
gainLimiter = attrList[attrIdx + 1];
TRACE_ATTR(ALC_OUTPUT_LIMITER_SOFT, gainLimiter);
break;
default:
TRACE("0x%04X = %d (0x%x)\n", attrList[attrIdx],
attrList[attrIdx + 1], attrList[attrIdx + 1]);
break;
}
attrIdx += 2;
}
#undef TRACE_ATTR
const bool loopback{device->Type == Loopback};
if(loopback)
{
if(!schans || !stype || !freq)
{
WARN("Missing format for loopback device\n");
return ALC_INVALID_VALUE;
}
if(!IsValidALCChannels(schans) || !IsValidALCType(stype) || freq < MIN_OUTPUT_RATE
|| freq > MAX_OUTPUT_RATE)
return ALC_INVALID_VALUE;
if(schans == ALC_BFORMAT3D_SOFT)
{
if(!alayout || !ascale || !aorder)
{
WARN("Missing ambisonic info for loopback device\n");
return ALC_INVALID_VALUE;
}
if(!IsValidAmbiLayout(alayout) || !IsValidAmbiScaling(ascale))
return ALC_INVALID_VALUE;
if(aorder < 1 || aorder > MAX_AMBI_ORDER)
return ALC_INVALID_VALUE;
if((alayout == ALC_FUMA_SOFT || ascale == ALC_FUMA_SOFT) && aorder > 3)
return ALC_INVALID_VALUE;
}
}
/* If a context is already running on the device, stop playback so the
* device attributes can be updated.
*/
if(device->Flags.get<DeviceRunning>())
device->Backend->stop();
device->Flags.unset<DeviceRunning>();
UpdateClockBase(device);
const char *devname{nullptr};
if(!loopback)
{
devname = device->DeviceName.c_str();
device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES;
device->UpdateSize = DEFAULT_UPDATE_SIZE;
device->Frequency = DEFAULT_OUTPUT_RATE;
freq = ConfigValueUInt(devname, nullptr, "frequency").value_or(freq);
if(freq < 1)
device->Flags.unset<FrequencyRequest>();
else
{
freq = clampu(freq, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE);
const double scale{static_cast<double>(freq) / device->Frequency};
device->UpdateSize = static_cast<ALuint>(device->UpdateSize*scale + 0.5);
device->BufferSize = static_cast<ALuint>(device->BufferSize*scale + 0.5);
device->Frequency = freq;
device->Flags.set<FrequencyRequest>();
}
if(auto persizeopt = ConfigValueUInt(devname, nullptr, "period_size"))
device->UpdateSize = clampu(*persizeopt, 64, 8192);
if(auto peropt = ConfigValueUInt(devname, nullptr, "periods"))
device->BufferSize = device->UpdateSize * clampu(*peropt, 2, 16);
else
device->BufferSize = maxu(device->BufferSize, device->UpdateSize*2);
}
else
{
device->Frequency = freq;
device->FmtChans = static_cast<DevFmtChannels>(schans);
device->FmtType = static_cast<DevFmtType>(stype);
if(schans == ALC_BFORMAT3D_SOFT)
{
device->mAmbiOrder = aorder;
device->mAmbiLayout = static_cast<AmbiLayout>(alayout);
device->mAmbiScale = static_cast<AmbiNorm>(ascale);
}
}
if(numMono > INT_MAX-numStereo)
numMono = INT_MAX-numStereo;
numMono += numStereo;
if(auto srcsopt = ConfigValueUInt(devname, nullptr, "sources"))
{
if(*srcsopt <= 0) numMono = 256;
else numMono = *srcsopt;
}
else
numMono = maxu(numMono, 256);
numStereo = minu(numStereo, numMono);
numMono -= numStereo;
device->SourcesMax = numMono + numStereo;
device->NumMonoSources = numMono;
device->NumStereoSources = numStereo;
if(auto sendsopt = ConfigValueInt(devname, nullptr, "sends"))
new_sends = minu(numSends, static_cast<ALuint>(clampi(*sendsopt, 0, MAX_SENDS)));
else
new_sends = numSends;
}
if(device->Flags.get<DeviceRunning>())
return ALC_NO_ERROR;
device->AvgSpeakerDist = 0.0f;
device->Uhj_Encoder = nullptr;
device->AmbiDecoder = nullptr;
device->Bs2b = nullptr;
device->PostProcess = nullptr;
device->Limiter = nullptr;
device->ChannelDelay.clear();
std::fill(std::begin(device->HrtfAccumData), std::end(device->HrtfAccumData), float2{});
device->Dry.AmbiMap.fill(BFChannelConfig{});
device->Dry.Buffer = {};
std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0u);
device->RealOut.RemixMap = {};
device->RealOut.ChannelIndex.fill(INVALID_CHANNEL_INDEX);
device->RealOut.Buffer = {};
device->MixBuffer.clear();
device->MixBuffer.shrink_to_fit();
UpdateClockBase(device);
device->FixedLatency = nanoseconds::zero();
device->DitherDepth = 0.0f;
device->DitherSeed = DitherRNGSeed;
/*************************************************************************
* Update device format request if HRTF is requested
*/
device->HrtfStatus = ALC_HRTF_DISABLED_SOFT;
if(device->Type != Loopback)
{
if(auto hrtfopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf"))
{
const char *hrtf{hrtfopt->c_str()};
if(al::strcasecmp(hrtf, "true") == 0)
hrtf_userreq = Hrtf_Enable;
else if(al::strcasecmp(hrtf, "false") == 0)
hrtf_userreq = Hrtf_Disable;
else if(al::strcasecmp(hrtf, "auto") != 0)
ERR("Unexpected hrtf value: %s\n", hrtf);
}
if(hrtf_userreq == Hrtf_Enable || (hrtf_userreq != Hrtf_Disable && hrtf_appreq == Hrtf_Enable))
{
device->FmtChans = DevFmtStereo;
device->Flags.set<ChannelsRequest>();
}
}
oldFreq = device->Frequency;
oldChans = device->FmtChans;
oldType = device->FmtType;
TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u / %u buffer\n",
device->Flags.get<ChannelsRequest>()?"*":"", DevFmtChannelsString(device->FmtChans),
device->Flags.get<SampleTypeRequest>()?"*":"", DevFmtTypeString(device->FmtType),
device->Flags.get<FrequencyRequest>()?"*":"", device->Frequency,
device->UpdateSize, device->BufferSize);
try {
auto backend = device->Backend.get();
if(!backend->reset())
throw al::backend_exception{ALC_INVALID_DEVICE, "Device reset failure"};
}
catch(std::exception &e) {
aluHandleDisconnect(device, "%s", e.what());
return ALC_INVALID_DEVICE;
}
if(device->FmtChans != oldChans && device->Flags.get<ChannelsRequest>())
{
ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans),
DevFmtChannelsString(device->FmtChans));
device->Flags.unset<ChannelsRequest>();
}
if(device->FmtType != oldType && device->Flags.get<SampleTypeRequest>())
{
ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType),
DevFmtTypeString(device->FmtType));
device->Flags.unset<SampleTypeRequest>();
}
if(device->Frequency != oldFreq && device->Flags.get<FrequencyRequest>())
{
WARN("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency);
device->Flags.unset<FrequencyRequest>();
}
TRACE("Post-reset: %s, %s, %uhz, %u / %u buffer\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->BufferSize);
switch(device->FmtChans)
{
case DevFmtMono: device->RealOut.RemixMap = MonoDownmix; break;
case DevFmtStereo: device->RealOut.RemixMap = StereoDownmix; break;
case DevFmtQuad: device->RealOut.RemixMap = QuadDownmix; break;
case DevFmtX51: device->RealOut.RemixMap = X51Downmix; break;
case DevFmtX51Rear: device->RealOut.RemixMap = X51RearDownmix; break;
case DevFmtX61: device->RealOut.RemixMap = X61Downmix; break;
case DevFmtX71: device->RealOut.RemixMap = X71Downmix; break;
case DevFmtAmbi3D: break;
}
aluInitRenderer(device, hrtf_id, hrtf_appreq, hrtf_userreq);
device->NumAuxSends = new_sends;
TRACE("Max sources: %d (%d + %d), effect slots: %d, sends: %d\n",
device->SourcesMax, device->NumMonoSources, device->NumStereoSources,
device->AuxiliaryEffectSlotMax, device->NumAuxSends);
if(device->Uhj_Encoder)
{
/* NOTE: Don't know why this has to be "copied" into a local constexpr
* variable to avoid a reference on Uhj2Encoder::sFilterSize...
*/
constexpr size_t filter_len{Uhj2Encoder::sFilterSize};
device->FixedLatency += nanoseconds{seconds{filter_len}} / device->Frequency;
}
if(device->mHrtfState)
device->FixedLatency += nanoseconds{seconds{HRTF_DIRECT_DELAY}} / device->Frequency;
if(auto *ambidec = device->AmbiDecoder.get())
{
if(ambidec->hasStablizer())
{
constexpr size_t StablizerDelay{FrontStablizer::DelayLength};
device->FixedLatency += nanoseconds{seconds{StablizerDelay}} / device->Frequency;
}
}
if(GetConfigValueBool(device->DeviceName.c_str(), nullptr, "dither", 1))
{
int depth{ConfigValueInt(device->DeviceName.c_str(), nullptr, "dither-depth").value_or(0)};
if(depth <= 0)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
depth = 8;
break;
case DevFmtShort:
case DevFmtUShort:
depth = 16;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
}
if(depth > 0)
{
depth = clampi(depth, 2, 24);
device->DitherDepth = std::pow(2.0f, static_cast<float>(depth-1));
}
}
if(!(device->DitherDepth > 0.0f))
TRACE("Dithering disabled\n");
else
TRACE("Dithering enabled (%d-bit, %g)\n", float2int(std::log2(device->DitherDepth)+0.5f)+1,
device->DitherDepth);
device->LimiterState = gainLimiter;
if(auto limopt = ConfigValueBool(device->DeviceName.c_str(), nullptr, "output-limiter"))
gainLimiter = *limopt ? ALC_TRUE : ALC_FALSE;
/* Valid values for gainLimiter are ALC_DONT_CARE_SOFT, ALC_TRUE, and
* ALC_FALSE. For ALC_DONT_CARE_SOFT, use the limiter for integer-based
* output (where samples must be clamped), and don't for floating-point
* (which can take unclamped samples).
*/
if(gainLimiter == ALC_DONT_CARE_SOFT)
{
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
case DevFmtShort:
case DevFmtUShort:
case DevFmtInt:
case DevFmtUInt:
gainLimiter = ALC_TRUE;
break;
case DevFmtFloat:
gainLimiter = ALC_FALSE;
break;
}
}
if(gainLimiter == ALC_FALSE)
TRACE("Output limiter disabled\n");
else
{
float thrshld{1.0f};
switch(device->FmtType)
{
case DevFmtByte:
case DevFmtUByte:
thrshld = 127.0f / 128.0f;
break;
case DevFmtShort:
case DevFmtUShort:
thrshld = 32767.0f / 32768.0f;
break;
case DevFmtInt:
case DevFmtUInt:
case DevFmtFloat:
break;
}
if(device->DitherDepth > 0.0f)
thrshld -= 1.0f / device->DitherDepth;
const float thrshld_dB{std::log10(thrshld) * 20.0f};
auto limiter = CreateDeviceLimiter(device, thrshld_dB);
/* Convert the lookahead from samples to nanosamples to nanoseconds. */
device->FixedLatency += nanoseconds{seconds{limiter->getLookAhead()}} / device->Frequency;
device->Limiter = std::move(limiter);
TRACE("Output limiter enabled, %.4fdB limit\n", thrshld_dB);
}
TRACE("Fixed device latency: %" PRId64 "ns\n", int64_t{device->FixedLatency.count()});
FPUCtl mixer_mode{};
for(ALCcontext *context : *device->mContexts.load())
{
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
aluInitEffectPanning(slot, device);
EffectState *state{slot->Effect.State};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device);
slot->updateProps(context);
}
std::unique_lock<std::mutex> proplock{context->mPropLock};
std::unique_lock<std::mutex> slotlock{context->mEffectSlotLock};
if(ALeffectslotArray *curarray{context->mActiveAuxSlots.load(std::memory_order_relaxed)})
std::fill_n(curarray->end(), curarray->size(), nullptr);
for(auto &sublist : context->mEffectSlotList)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
ALsizei idx{CTZ64(usemask)};
ALeffectslot *slot{sublist.EffectSlots + idx};
usemask &= ~(1_u64 << idx);
aluInitEffectPanning(slot, device);
EffectState *state{slot->Effect.State};
state->mOutTarget = device->Dry.Buffer;
state->deviceUpdate(device);
slot->updateProps(context);
}
}
slotlock.unlock();
const ALuint num_sends{device->NumAuxSends};
std::unique_lock<std::mutex> srclock{context->mSourceLock};
for(auto &sublist : context->mSourceList)
{
uint64_t usemask{~sublist.FreeMask};
while(usemask)
{
ALsizei idx{CTZ64(usemask)};
ALsource *source{sublist.Sources + idx};
usemask &= ~(1_u64 << idx);
auto clear_send = [](ALsource::SendData &send) -> void
{
if(send.Slot)
DecrementRef(send.Slot->ref);
send.Slot = nullptr;
send.Gain = 1.0f;
send.GainHF = 1.0f;
send.HFReference = LOWPASSFREQREF;
send.GainLF = 1.0f;
send.LFReference = HIGHPASSFREQREF;
};
auto send_begin = source->Send.begin() + static_cast<ptrdiff_t>(num_sends);
std::for_each(send_begin, source->Send.end(), clear_send);
source->PropsClean.clear(std::memory_order_release);
}
}
/* Clear any pre-existing voice property structs, in case the number of
* auxiliary sends is changing. Active sources will have updates
* respecified in UpdateAllSourceProps.
*/
VoicePropsItem *vprops{context->mFreeVoiceProps.exchange(nullptr, std::memory_order_acq_rel)};
while(vprops)
{
VoicePropsItem *next = vprops->next.load(std::memory_order_relaxed);
delete vprops;
vprops = next;
}
auto voicelist = context->getVoicesSpan();
for(Voice *voice : voicelist)
{
/* Clear extraneous property set sends. */
std::fill(std::begin(voice->mProps.Send)+num_sends, std::end(voice->mProps.Send),
VoiceProps::SendData{});
std::fill(voice->mSend.begin()+num_sends, voice->mSend.end(), Voice::TargetData{});
for(auto &chandata : voice->mChans)
{
std::fill(chandata.mWetParams.begin()+num_sends, chandata.mWetParams.end(),
SendParams{});
}
delete voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel);
/* Force the voice to stopped if it was stopping. */
Voice::State vstate{Voice::Stopping};
voice->mPlayState.compare_exchange_strong(vstate, Voice::Stopped,
std::memory_order_acquire, std::memory_order_acquire);
if(voice->mSourceID.load(std::memory_order_relaxed) == 0u)
continue;
voice->mStep = 0;
voice->mFlags |= VOICE_IS_FADING;
if(voice->mAmbiOrder && device->mAmbiOrder > voice->mAmbiOrder)
{
const uint8_t *OrderFromChan{(voice->mFmtChannels == FmtBFormat2D) ?
AmbiIndex::OrderFrom2DChannel.data() :
AmbiIndex::OrderFromChannel.data()};
const BandSplitter splitter{400.0f / static_cast<float>(device->Frequency)};
const auto scales = BFormatDec::GetHFOrderScales(voice->mAmbiOrder,
device->mAmbiOrder);
for(auto &chandata : voice->mChans)
{
chandata.mPrevSamples.fill(0.0f);
chandata.mAmbiScale = scales[*(OrderFromChan++)];
chandata.mAmbiSplitter = splitter;
chandata.mDryParams = DirectParams{};
std::fill_n(chandata.mWetParams.begin(), num_sends, SendParams{});
}
voice->mFlags |= VOICE_IS_AMBISONIC;
}
else
{
/* Clear previous samples. */
for(auto &chandata : voice->mChans)
{
chandata.mPrevSamples.fill(0.0f);
chandata.mDryParams = DirectParams{};
std::fill_n(chandata.mWetParams.begin(), num_sends, SendParams{});
}
voice->mFlags &= ~VOICE_IS_AMBISONIC;
}
if(device->AvgSpeakerDist > 0.0f)
{
/* Reinitialize the NFC filters for new parameters. */
const float w1{SPEEDOFSOUNDMETRESPERSEC /
(device->AvgSpeakerDist * static_cast<float>(device->Frequency))};
for(auto &chandata : voice->mChans)
chandata.mDryParams.NFCtrlFilter.init(w1);
}
}
srclock.unlock();
context->mPropsClean.test_and_set(std::memory_order_release);
UpdateContextProps(context);
context->mListener.PropsClean.test_and_set(std::memory_order_release);
UpdateListenerProps(context);
UpdateAllSourceProps(context);
}
mixer_mode.leave();
if(!device->Flags.get<DevicePaused>())
{
try {
auto backend = device->Backend.get();
backend->start();
device->Flags.set<DeviceRunning>();
}
catch(al::backend_exception& e) {
aluHandleDisconnect(device, "%s", e.what());
return ALC_INVALID_DEVICE;
}
}
return ALC_NO_ERROR;
}
ALCdevice::ALCdevice(DeviceType type) : Type{type}, mContexts{&EmptyContextArray}
{
}
ALCdevice::~ALCdevice()
{
TRACE("Freeing device %p\n", decltype(std::declval<void*>()){this});
Backend = nullptr;
size_t count{std::accumulate(BufferList.cbegin(), BufferList.cend(), size_t{0u},
[](size_t cur, const BufferSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(POPCNT64(~sublist.FreeMask)); }
)};
if(count > 0)
WARN("%zu Buffer%s not deleted\n", count, (count==1)?"":"s");
count = std::accumulate(EffectList.cbegin(), EffectList.cend(), size_t{0u},
[](size_t cur, const EffectSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(POPCNT64(~sublist.FreeMask)); }
);
if(count > 0)
WARN("%zu Effect%s not deleted\n", count, (count==1)?"":"s");
count = std::accumulate(FilterList.cbegin(), FilterList.cend(), size_t{0u},
[](size_t cur, const FilterSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(POPCNT64(~sublist.FreeMask)); }
);
if(count > 0)
WARN("%zu Filter%s not deleted\n", count, (count==1)?"":"s");
mHrtf = nullptr;
auto *oldarray = mContexts.exchange(nullptr, std::memory_order_relaxed);
if(oldarray != &EmptyContextArray) delete oldarray;
}
/** Checks if the device handle is valid, and returns a new reference if so. */
static DeviceRef VerifyDevice(ALCdevice *device)
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter != DeviceList.end() && *iter == device)
{
(*iter)->add_ref();
return DeviceRef{*iter};
}
return nullptr;
}
ALCcontext::ALCcontext(al::intrusive_ptr<ALCdevice> device) : mDevice{std::move(device)}
{
mPropsClean.test_and_set(std::memory_order_relaxed);
}
ALCcontext::~ALCcontext()
{
TRACE("Freeing context %p\n", decltype(std::declval<void*>()){this});
size_t count{0};
ALcontextProps *cprops{mUpdate.exchange(nullptr, std::memory_order_relaxed)};
if(cprops)
{
++count;
delete cprops;
}
cprops = mFreeContextProps.exchange(nullptr, std::memory_order_acquire);
while(cprops)
{
ALcontextProps *next{cprops->next.load(std::memory_order_relaxed)};
delete cprops;
cprops = next;
++count;
}
TRACE("Freed %zu context property object%s\n", count, (count==1)?"":"s");
count = std::accumulate(mSourceList.cbegin(), mSourceList.cend(), size_t{0u},
[](size_t cur, const SourceSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(POPCNT64(~sublist.FreeMask)); }
);
if(count > 0)
WARN("%zu Source%s not deleted\n", count, (count==1)?"":"s");
mSourceList.clear();
mNumSources = 0;
count = 0;
ALeffectslotProps *eprops{mFreeEffectslotProps.exchange(nullptr, std::memory_order_acquire)};
while(eprops)
{
ALeffectslotProps *next{eprops->next.load(std::memory_order_relaxed)};
if(eprops->State) eprops->State->release();
delete eprops;
eprops = next;
++count;
}
TRACE("Freed %zu AuxiliaryEffectSlot property object%s\n", count, (count==1)?"":"s");
if(ALeffectslotArray *curarray{mActiveAuxSlots.exchange(nullptr, std::memory_order_relaxed)})
{
al::destroy_n(curarray->end(), curarray->size());
delete curarray;
}
mDefaultSlot = nullptr;
count = std::accumulate(mEffectSlotList.cbegin(), mEffectSlotList.cend(), size_t{0u},
[](size_t cur, const EffectSlotSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(POPCNT64(~sublist.FreeMask)); }
);
if(count > 0)
WARN("%zu AuxiliaryEffectSlot%s not deleted\n", count, (count==1)?"":"s");
mEffectSlotList.clear();
mNumEffectSlots = 0;
count = 0;
VoicePropsItem *vprops{mFreeVoiceProps.exchange(nullptr, std::memory_order_acquire)};
while(vprops)
{
VoicePropsItem *next{vprops->next.load(std::memory_order_relaxed)};
delete vprops;
vprops = next;
++count;
}
TRACE("Freed %zu voice property object%s\n", count, (count==1)?"":"s");
delete mVoices.exchange(nullptr, std::memory_order_relaxed);
count = 0;
ALlistenerProps *lprops{mListener.Params.Update.exchange(nullptr, std::memory_order_relaxed)};
if(lprops)
{
++count;
delete lprops;
}
lprops = mFreeListenerProps.exchange(nullptr, std::memory_order_acquire);
while(lprops)
{
ALlistenerProps *next{lprops->next.load(std::memory_order_relaxed)};
delete lprops;
lprops = next;
++count;
}
TRACE("Freed %zu listener property object%s\n", count, (count==1)?"":"s");
if(mAsyncEvents)
{
count = 0;
auto evt_vec = mAsyncEvents->getReadVector();
if(evt_vec.first.len > 0)
{
al::destroy_n(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf), evt_vec.first.len);
count += evt_vec.first.len;
}
if(evt_vec.second.len > 0)
{
al::destroy_n(reinterpret_cast<AsyncEvent*>(evt_vec.second.buf), evt_vec.second.len);
count += evt_vec.second.len;
}
if(count > 0)
TRACE("Destructed %zu orphaned event%s\n", count, (count==1)?"":"s");
mAsyncEvents->readAdvance(count);
}
}
void ALCcontext::init()
{
if(DefaultEffect.type != AL_EFFECT_NULL && mDevice->Type == Playback)
{
mDefaultSlot = std::unique_ptr<ALeffectslot>{new ALeffectslot{}};
if(mDefaultSlot->init() == AL_NO_ERROR)
aluInitEffectPanning(mDefaultSlot.get(), mDevice.get());
else
{
mDefaultSlot = nullptr;
ERR("Failed to initialize the default effect slot\n");
}
}
ALeffectslotArray *auxslots;
if(!mDefaultSlot)
auxslots = ALeffectslot::CreatePtrArray(0);
else
{
auxslots = ALeffectslot::CreatePtrArray(1);
(*auxslots)[0] = mDefaultSlot.get();
}
mActiveAuxSlots.store(auxslots, std::memory_order_relaxed);
allocVoiceChanges(1);
{
VoiceChange *cur{mVoiceChangeTail};
while(VoiceChange *next{cur->mNext.load(std::memory_order_relaxed)})
cur = next;
mCurrentVoiceChange.store(cur, std::memory_order_relaxed);
}
mExtensionList = alExtList;
mListener.Params.Matrix = alu::Matrix::Identity();
mListener.Params.Velocity = alu::Vector{};
mListener.Params.Gain = mListener.Gain;
mListener.Params.MetersPerUnit = mListener.mMetersPerUnit;
mListener.Params.DopplerFactor = mDopplerFactor;
mListener.Params.SpeedOfSound = mSpeedOfSound * mDopplerVelocity;
mListener.Params.SourceDistanceModel = mSourceDistanceModel;
mListener.Params.mDistanceModel = mDistanceModel;
mAsyncEvents = RingBuffer::Create(511, sizeof(AsyncEvent), false);
StartEventThrd(this);
allocVoices(256);
mActiveVoiceCount.store(64, std::memory_order_relaxed);
}
bool ALCcontext::deinit()
{
if(LocalContext == this)
{
WARN("%p released while current on thread\n", decltype(std::declval<void*>()){this});
ThreadContext.set(nullptr);
release();
}
ALCcontext *origctx{this};
if(GlobalContext.compare_exchange_strong(origctx, nullptr))
release();
bool ret{};
/* First make sure this context exists in the device's list. */
auto *oldarray = mDevice->mContexts.load(std::memory_order_acquire);
if(auto toremove = static_cast<size_t>(std::count(oldarray->begin(), oldarray->end(), this)))
{
using ContextArray = al::FlexArray<ALCcontext*>;
auto alloc_ctx_array = [](const size_t count) -> ContextArray*
{
if(count == 0) return &EmptyContextArray;
return ContextArray::Create(count).release();
};
auto *newarray = alloc_ctx_array(oldarray->size() - toremove);
/* Copy the current/old context handles to the new array, excluding the
* given context.
*/
std::copy_if(oldarray->begin(), oldarray->end(), newarray->begin(),
std::bind(std::not_equal_to<ALCcontext*>{}, _1, this));
/* Store the new context array in the device. Wait for any current mix
* to finish before deleting the old array.
*/
mDevice->mContexts.store(newarray);
if(oldarray != &EmptyContextArray)
{
mDevice->waitForMix();
delete oldarray;
}
ret = !newarray->empty();
}
else
ret = !oldarray->empty();
StopEventThrd(this);
return ret;
}
/**
* Checks if the given context is valid, returning a new reference to it if so.
*/
static ContextRef VerifyContext(ALCcontext *context)
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter != ContextList.end() && *iter == context)
{
(*iter)->add_ref();
return ContextRef{*iter};
}
return nullptr;
}
/** Returns a new reference to the currently active context for this thread. */
ContextRef GetContextRef(void)
{
ALCcontext *context{LocalContext};
if(context)
context->add_ref();
else
{
std::lock_guard<std::recursive_mutex> _{ListLock};
context = GlobalContext.load(std::memory_order_acquire);
if(context) context->add_ref();
}
return ContextRef{context};
}
/************************************************
* Standard ALC functions
************************************************/
ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(dev) return dev->LastError.exchange(ALC_NO_ERROR);
return LastNullDeviceError.exchange(ALC_NO_ERROR);
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcSuspendContext(ALCcontext *context)
START_API_FUNC
{
if(!SuspendDefers)
return;
ContextRef ctx{VerifyContext(context)};
if(!ctx)
alcSetError(nullptr, ALC_INVALID_CONTEXT);
else
ctx->deferUpdates();
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcProcessContext(ALCcontext *context)
START_API_FUNC
{
if(!SuspendDefers)
return;
ContextRef ctx{VerifyContext(context)};
if(!ctx)
alcSetError(nullptr, ALC_INVALID_CONTEXT);
else
ctx->processUpdates();
}
END_API_FUNC
ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param)
START_API_FUNC
{
const ALCchar *value{nullptr};
switch(param)
{
case ALC_NO_ERROR:
value = alcNoError;
break;
case ALC_INVALID_ENUM:
value = alcErrInvalidEnum;
break;
case ALC_INVALID_VALUE:
value = alcErrInvalidValue;
break;
case ALC_INVALID_DEVICE:
value = alcErrInvalidDevice;
break;
case ALC_INVALID_CONTEXT:
value = alcErrInvalidContext;
break;
case ALC_OUT_OF_MEMORY:
value = alcErrOutOfMemory;
break;
case ALC_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_ALL_DEVICES_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
value = dev->DeviceName.c_str();
else
{
ProbeAllDevicesList();
value = alcAllDevicesList.c_str();
}
break;
case ALC_CAPTURE_DEVICE_SPECIFIER:
if(DeviceRef dev{VerifyDevice(Device)})
value = dev->DeviceName.c_str();
else
{
ProbeCaptureDeviceList();
value = alcCaptureDeviceList.c_str();
}
break;
/* Default devices are always first in the list */
case ALC_DEFAULT_DEVICE_SPECIFIER:
value = alcDefaultName;
break;
case ALC_DEFAULT_ALL_DEVICES_SPECIFIER:
if(alcAllDevicesList.empty())
ProbeAllDevicesList();
/* Copy first entry as default. */
alcDefaultAllDevicesSpecifier = alcAllDevicesList.c_str();
value = alcDefaultAllDevicesSpecifier.c_str();
break;
case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER:
if(alcCaptureDeviceList.empty())
ProbeCaptureDeviceList();
/* Copy first entry as default. */
alcCaptureDefaultDeviceSpecifier = alcCaptureDeviceList.c_str();
value = alcCaptureDefaultDeviceSpecifier.c_str();
break;
case ALC_EXTENSIONS:
if(VerifyDevice(Device))
value = alcExtensionList;
else
value = alcNoDeviceExtList;
break;
case ALC_HRTF_SPECIFIER_SOFT:
if(DeviceRef dev{VerifyDevice(Device)})
{
std::lock_guard<std::mutex> _{dev->StateLock};
value = (dev->mHrtf ? dev->HrtfName.c_str() : "");
}
else
alcSetError(nullptr, ALC_INVALID_DEVICE);
break;
default:
alcSetError(VerifyDevice(Device).get(), ALC_INVALID_ENUM);
break;
}
return value;
}
END_API_FUNC
static inline ALCsizei NumAttrsForDevice(ALCdevice *device)
{
if(device->Type == Capture) return 9;
if(device->Type != Loopback) return 29;
if(device->FmtChans == DevFmtAmbi3D)
return 35;
return 29;
}
static size_t GetIntegerv(ALCdevice *device, ALCenum param, const al::span<int> values)
{
size_t i;
if(values.empty())
{
alcSetError(device, ALC_INVALID_VALUE);
return 0;
}
if(!device)
{
switch(param)
{
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_ATTRIBUTES_SIZE:
case ALC_ALL_ATTRIBUTES:
case ALC_FREQUENCY:
case ALC_REFRESH:
case ALC_SYNC:
case ALC_MONO_SOURCES:
case ALC_STEREO_SOURCES:
case ALC_CAPTURE_SAMPLES:
case ALC_FORMAT_CHANNELS_SOFT:
case ALC_FORMAT_TYPE_SOFT:
case ALC_AMBISONIC_LAYOUT_SOFT:
case ALC_AMBISONIC_SCALING_SOFT:
case ALC_AMBISONIC_ORDER_SOFT:
case ALC_MAX_AMBISONIC_ORDER_SOFT:
alcSetError(nullptr, ALC_INVALID_DEVICE);
return 0;
default:
alcSetError(nullptr, ALC_INVALID_ENUM);
}
return 0;
}
if(device->Type == Capture)
{
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = NumAttrsForDevice(device);
return 1;
case ALC_ALL_ATTRIBUTES:
i = 0;
if(values.size() < static_cast<size_t>(NumAttrsForDevice(device)))
alcSetError(device, ALC_INVALID_VALUE);
else
{
std::lock_guard<std::mutex> _{device->StateLock};
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_CAPTURE_SAMPLES;
values[i++] = static_cast<int>(device->Backend->availableSamples());
values[i++] = ALC_CONNECTED;
values[i++] = device->Connected.load(std::memory_order_relaxed);
values[i++] = 0;
}
return i;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_CAPTURE_SAMPLES:
{
std::lock_guard<std::mutex> _{device->StateLock};
values[0] = static_cast<int>(device->Backend->availableSamples());
}
return 1;
case ALC_CONNECTED:
{
std::lock_guard<std::mutex> _{device->StateLock};
values[0] = device->Connected.load(std::memory_order_acquire);
}
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
/* render device */
switch(param)
{
case ALC_ATTRIBUTES_SIZE:
values[0] = NumAttrsForDevice(device);
return 1;
case ALC_ALL_ATTRIBUTES:
i = 0;
if(values.size() < static_cast<size_t>(NumAttrsForDevice(device)))
alcSetError(device, ALC_INVALID_VALUE);
else
{
std::lock_guard<std::mutex> _{device->StateLock};
values[i++] = ALC_MAJOR_VERSION;
values[i++] = alcMajorVersion;
values[i++] = ALC_MINOR_VERSION;
values[i++] = alcMinorVersion;
values[i++] = ALC_EFX_MAJOR_VERSION;
values[i++] = alcEFXMajorVersion;
values[i++] = ALC_EFX_MINOR_VERSION;
values[i++] = alcEFXMinorVersion;
values[i++] = ALC_FREQUENCY;
values[i++] = static_cast<int>(device->Frequency);
if(device->Type != Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = static_cast<int>(device->Frequency / device->UpdateSize);
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
if(device->FmtChans == DevFmtAmbi3D)
{
values[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
values[i++] = static_cast<int>(device->mAmbiLayout);
values[i++] = ALC_AMBISONIC_SCALING_SOFT;
values[i++] = static_cast<int>(device->mAmbiScale);
values[i++] = ALC_AMBISONIC_ORDER_SOFT;
values[i++] = static_cast<int>(device->mAmbiOrder);
}
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = device->FmtChans;
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = device->FmtType;
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = static_cast<int>(device->NumMonoSources);
values[i++] = ALC_STEREO_SOURCES;
values[i++] = static_cast<int>(device->NumStereoSources);
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = static_cast<int>(device->NumAuxSends);
values[i++] = ALC_HRTF_SOFT;
values[i++] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = device->HrtfStatus;
values[i++] = ALC_OUTPUT_LIMITER_SOFT;
values[i++] = device->Limiter ? ALC_TRUE : ALC_FALSE;
values[i++] = ALC_MAX_AMBISONIC_ORDER_SOFT;
values[i++] = MAX_AMBI_ORDER;
values[i++] = 0;
}
return i;
case ALC_MAJOR_VERSION:
values[0] = alcMajorVersion;
return 1;
case ALC_MINOR_VERSION:
values[0] = alcMinorVersion;
return 1;
case ALC_EFX_MAJOR_VERSION:
values[0] = alcEFXMajorVersion;
return 1;
case ALC_EFX_MINOR_VERSION:
values[0] = alcEFXMinorVersion;
return 1;
case ALC_FREQUENCY:
values[0] = static_cast<int>(device->Frequency);
return 1;
case ALC_REFRESH:
if(device->Type == Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
{
std::lock_guard<std::mutex> _{device->StateLock};
values[0] = static_cast<int>(device->Frequency / device->UpdateSize);
}
return 1;
case ALC_SYNC:
if(device->Type == Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = ALC_FALSE;
return 1;
case ALC_FORMAT_CHANNELS_SOFT:
if(device->Type != Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = device->FmtChans;
return 1;
case ALC_FORMAT_TYPE_SOFT:
if(device->Type != Loopback)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = device->FmtType;
return 1;
case ALC_AMBISONIC_LAYOUT_SOFT:
if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mAmbiLayout);
return 1;
case ALC_AMBISONIC_SCALING_SOFT:
if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mAmbiScale);
return 1;
case ALC_AMBISONIC_ORDER_SOFT:
if(device->Type != Loopback || device->FmtChans != DevFmtAmbi3D)
{
alcSetError(device, ALC_INVALID_DEVICE);
return 0;
}
values[0] = static_cast<int>(device->mAmbiOrder);
return 1;
case ALC_MONO_SOURCES:
values[0] = static_cast<int>(device->NumMonoSources);
return 1;
case ALC_STEREO_SOURCES:
values[0] = static_cast<int>(device->NumStereoSources);
return 1;
case ALC_MAX_AUXILIARY_SENDS:
values[0] = static_cast<int>(device->NumAuxSends);
return 1;
case ALC_CONNECTED:
{
std::lock_guard<std::mutex> _{device->StateLock};
values[0] = device->Connected.load(std::memory_order_acquire);
}
return 1;
case ALC_HRTF_SOFT:
values[0] = (device->mHrtf ? ALC_TRUE : ALC_FALSE);
return 1;
case ALC_HRTF_STATUS_SOFT:
values[0] = device->HrtfStatus;
return 1;
case ALC_NUM_HRTF_SPECIFIERS_SOFT:
{
std::lock_guard<std::mutex> _{device->StateLock};
device->HrtfList = EnumerateHrtf(device->DeviceName.c_str());
values[0] = static_cast<int>(minz(device->HrtfList.size(),
std::numeric_limits<int>::max()));
}
return 1;
case ALC_OUTPUT_LIMITER_SOFT:
values[0] = device->Limiter ? ALC_TRUE : ALC_FALSE;
return 1;
case ALC_MAX_AMBISONIC_ORDER_SOFT:
values[0] = MAX_AMBI_ORDER;
return 1;
default:
alcSetError(device, ALC_INVALID_ENUM);
}
return 0;
}
ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
GetIntegerv(dev.get(), param, {values, static_cast<ALuint>(size)});
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(size <= 0 || values == nullptr)
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
if(!dev || dev->Type == Capture)
{
auto ivals = al::vector<int>(static_cast<ALuint>(size));
size_t got{GetIntegerv(dev.get(), pname, ivals)};
std::copy_n(ivals.begin(), got, values);
return;
}
/* render device */
switch(pname)
{
case ALC_ATTRIBUTES_SIZE:
*values = NumAttrsForDevice(dev.get())+4;
break;
case ALC_ALL_ATTRIBUTES:
if(size < NumAttrsForDevice(dev.get())+4)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
size_t i{0};
std::lock_guard<std::mutex> _{dev->StateLock};
values[i++] = ALC_FREQUENCY;
values[i++] = dev->Frequency;
if(dev->Type != Loopback)
{
values[i++] = ALC_REFRESH;
values[i++] = dev->Frequency / dev->UpdateSize;
values[i++] = ALC_SYNC;
values[i++] = ALC_FALSE;
}
else
{
if(dev->FmtChans == DevFmtAmbi3D)
{
values[i++] = ALC_AMBISONIC_LAYOUT_SOFT;
values[i++] = static_cast<int64_t>(dev->mAmbiLayout);
values[i++] = ALC_AMBISONIC_SCALING_SOFT;
values[i++] = static_cast<int64_t>(dev->mAmbiScale);
values[i++] = ALC_AMBISONIC_ORDER_SOFT;
values[i++] = dev->mAmbiOrder;
}
values[i++] = ALC_FORMAT_CHANNELS_SOFT;
values[i++] = dev->FmtChans;
values[i++] = ALC_FORMAT_TYPE_SOFT;
values[i++] = dev->FmtType;
}
values[i++] = ALC_MONO_SOURCES;
values[i++] = dev->NumMonoSources;
values[i++] = ALC_STEREO_SOURCES;
values[i++] = dev->NumStereoSources;
values[i++] = ALC_MAX_AUXILIARY_SENDS;
values[i++] = dev->NumAuxSends;
values[i++] = ALC_HRTF_SOFT;
values[i++] = (dev->mHrtf ? ALC_TRUE : ALC_FALSE);
values[i++] = ALC_HRTF_STATUS_SOFT;
values[i++] = dev->HrtfStatus;
values[i++] = ALC_OUTPUT_LIMITER_SOFT;
values[i++] = dev->Limiter ? ALC_TRUE : ALC_FALSE;
ClockLatency clock{GetClockLatency(dev.get())};
values[i++] = ALC_DEVICE_CLOCK_SOFT;
values[i++] = clock.ClockTime.count();
values[i++] = ALC_DEVICE_LATENCY_SOFT;
values[i++] = clock.Latency.count();
values[i++] = 0;
}
break;
case ALC_DEVICE_CLOCK_SOFT:
{
std::lock_guard<std::mutex> _{dev->StateLock};
ALuint samplecount, refcount;
nanoseconds basecount;
do {
refcount = dev->waitForMix();
basecount = dev->ClockBase;
samplecount = dev->SamplesDone;
} while(refcount != ReadRef(dev->MixCount));
basecount += nanoseconds{seconds{samplecount}} / dev->Frequency;
*values = basecount.count();
}
break;
case ALC_DEVICE_LATENCY_SOFT:
{
std::lock_guard<std::mutex> _{dev->StateLock};
ClockLatency clock{GetClockLatency(dev.get())};
*values = clock.Latency.count();
}
break;
case ALC_DEVICE_CLOCK_LATENCY_SOFT:
if(size < 2)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
ClockLatency clock{GetClockLatency(dev.get())};
values[0] = clock.ClockTime.count();
values[1] = clock.Latency.count();
}
break;
default:
auto ivals = al::vector<int>(static_cast<ALuint>(size));
size_t got{GetIntegerv(dev.get(), pname, ivals)};
std::copy_n(ivals.begin(), got, values);
break;
}
}
END_API_FUNC
ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!extName)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
size_t len = strlen(extName);
const char *ptr = (dev ? alcExtensionList : alcNoDeviceExtList);
while(ptr && *ptr)
{
if(al::strncasecmp(ptr, extName, len) == 0 && (ptr[len] == '\0' || isspace(ptr[len])))
return ALC_TRUE;
if((ptr=strchr(ptr, ' ')) != nullptr)
{
do {
++ptr;
} while(isspace(*ptr));
}
}
}
return ALC_FALSE;
}
END_API_FUNC
ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName)
START_API_FUNC
{
if(!funcName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
}
else
{
for(const auto &func : alcFunctions)
{
if(strcmp(func.funcName, funcName) == 0)
return func.address;
}
}
return nullptr;
}
END_API_FUNC
ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName)
START_API_FUNC
{
if(!enumName)
{
DeviceRef dev{VerifyDevice(device)};
alcSetError(dev.get(), ALC_INVALID_VALUE);
}
else
{
for(const auto &enm : alcEnumerations)
{
if(strcmp(enm.enumName, enumName) == 0)
return enm.value;
}
}
return 0;
}
END_API_FUNC
ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList)
START_API_FUNC
{
/* Explicitly hold the list lock while taking the StateLock in case the
* device is asynchronously destroyed, to ensure this new context is
* properly cleaned up after being made.
*/
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == Capture || !dev->Connected.load(std::memory_order_relaxed))
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return nullptr;
}
std::unique_lock<std::mutex> statelock{dev->StateLock};
listlock.unlock();
dev->LastError.store(ALC_NO_ERROR);
ALCenum err{UpdateDeviceParams(dev.get(), attrList)};
if(err != ALC_NO_ERROR)
{
alcSetError(dev.get(), err);
return nullptr;
}
ContextRef context{new ALCcontext{dev}};
context->init();
if(auto volopt = ConfigValueFloat(dev->DeviceName.c_str(), nullptr, "volume-adjust"))
{
const float valf{*volopt};
if(!std::isfinite(valf))
ERR("volume-adjust must be finite: %f\n", valf);
else
{
const float db{clampf(valf, -24.0f, 24.0f)};
if(db != valf)
WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f);
context->mGainBoost = std::pow(10.0f, db/20.0f);
TRACE("volume-adjust gain: %f\n", context->mGainBoost);
}
}
UpdateListenerProps(context.get());
{
using ContextArray = al::FlexArray<ALCcontext*>;
/* Allocate a new context array, which holds 1 more than the current/
* old array.
*/
auto *oldarray = device->mContexts.load();
const size_t newcount{oldarray->size()+1};
std::unique_ptr<ContextArray> newarray{ContextArray::Create(newcount)};
/* Copy the current/old context handles to the new array, appending the
* new context.
*/
auto iter = std::copy(oldarray->begin(), oldarray->end(), newarray->begin());
*iter = context.get();
/* Store the new context array in the device. Wait for any current mix
* to finish before deleting the old array.
*/
dev->mContexts.store(newarray.release());
if(oldarray != &EmptyContextArray)
{
dev->waitForMix();
delete oldarray;
}
}
statelock.unlock();
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context.get());
ContextList.emplace(iter, context.get());
}
if(ALeffectslot *slot{context->mDefaultSlot.get()})
{
if(slot->initEffect(&DefaultEffect, context.get()) == AL_NO_ERROR)
slot->updateProps(context.get());
else
ERR("Failed to initialize the default effect\n");
}
TRACE("Created context %p\n", decltype(std::declval<void*>()){context.get()});
return context.release();
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcDestroyContext(ALCcontext *context)
START_API_FUNC
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context);
if(iter == ContextList.end() || *iter != context)
{
listlock.unlock();
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return;
}
/* Hold a reference to this context so it remains valid until the ListLock
* is released.
*/
ContextRef ctx{*iter};
ContextList.erase(iter);
ALCdevice *Device{ctx->mDevice.get()};
std::lock_guard<std::mutex> _{Device->StateLock};
if(!ctx->deinit() && Device->Flags.get<DeviceRunning>())
{
Device->Backend->stop();
Device->Flags.unset<DeviceRunning>();
}
}
END_API_FUNC
ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void)
START_API_FUNC
{
ALCcontext *Context{LocalContext};
if(!Context) Context = GlobalContext.load();
return Context;
}
END_API_FUNC
/** Returns the currently active thread-local context. */
ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void)
START_API_FUNC
{ return LocalContext; }
END_API_FUNC
ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context)
START_API_FUNC
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* Release this reference (if any) to store it in the GlobalContext
* pointer. Take ownership of the reference (if any) that was previously
* stored there.
*/
ctx = ContextRef{GlobalContext.exchange(ctx.release())};
/* Reset (decrement) the previous global reference by replacing it with the
* thread-local context. Take ownership of the thread-local context
* reference (if any), clearing the storage to null.
*/
ctx = ContextRef{LocalContext};
if(ctx) ThreadContext.set(nullptr);
/* Reset (decrement) the previous thread-local reference. */
return ALC_TRUE;
}
END_API_FUNC
/** Makes the given context the active context for the current thread. */
ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context)
START_API_FUNC
{
/* context must be valid or nullptr */
ContextRef ctx;
if(context)
{
ctx = VerifyContext(context);
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return ALC_FALSE;
}
}
/* context's reference count is already incremented */
ContextRef old{LocalContext};
ThreadContext.set(ctx.release());
return ALC_TRUE;
}
END_API_FUNC
ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context)
START_API_FUNC
{
ContextRef ctx{VerifyContext(Context)};
if(!ctx)
{
alcSetError(nullptr, ALC_INVALID_CONTEXT);
return nullptr;
}
return ctx->mDevice.get();
}
END_API_FUNC
ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName)
START_API_FUNC
{
DO_INITCONFIG();
if(!PlaybackFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(deviceName)
{
if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0
#ifdef _WIN32
/* Some old Windows apps hardcode these expecting OpenAL to use a
* specific audio API, even when they're not enumerated. Creative's
* router effectively ignores them too.
*/
|| al::strcasecmp(deviceName, "DirectSound3D") == 0
|| al::strcasecmp(deviceName, "DirectSound") == 0
|| al::strcasecmp(deviceName, "MMSYSTEM") == 0
#endif
|| al::strcasecmp(deviceName, "openal-soft") == 0)
deviceName = nullptr;
}
DeviceRef device{new ALCdevice{Playback}};
/* Set output format */
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->UpdateSize = DEFAULT_UPDATE_SIZE;
device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES;
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DEFAULT_SENDS;
try {
auto backend = PlaybackFactory->createBackend(device.get(), BackendType::Playback);
std::lock_guard<std::recursive_mutex> _{ListLock};
backend->open(deviceName);
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open playback device: %s\n", e.what());
alcSetError(nullptr, e.errorCode());
return nullptr;
}
deviceName = device->DeviceName.c_str();
if(auto chanopt = ConfigValueStr(deviceName, nullptr, "channels"))
{
static const struct ChannelMap {
const char name[16];
DevFmtChannels chans;
ALuint order;
} chanlist[] = {
{ "mono", DevFmtMono, 0 },
{ "stereo", DevFmtStereo, 0 },
{ "quad", DevFmtQuad, 0 },
{ "surround51", DevFmtX51, 0 },
{ "surround61", DevFmtX61, 0 },
{ "surround71", DevFmtX71, 0 },
{ "surround51rear", DevFmtX51Rear, 0 },
{ "ambi1", DevFmtAmbi3D, 1 },
{ "ambi2", DevFmtAmbi3D, 2 },
{ "ambi3", DevFmtAmbi3D, 3 },
};
const ALCchar *fmt{chanopt->c_str()};
auto iter = std::find_if(std::begin(chanlist), std::end(chanlist),
[fmt](const ChannelMap &entry) -> bool
{ return al::strcasecmp(entry.name, fmt) == 0; }
);
if(iter == std::end(chanlist))
ERR("Unsupported channels: %s\n", fmt);
else
{
device->FmtChans = iter->chans;
device->mAmbiOrder = iter->order;
device->Flags.set<ChannelsRequest>();
}
}
if(auto typeopt = ConfigValueStr(deviceName, nullptr, "sample-type"))
{
static const struct TypeMap {
const char name[16];
DevFmtType type;
} typelist[] = {
{ "int8", DevFmtByte },
{ "uint8", DevFmtUByte },
{ "int16", DevFmtShort },
{ "uint16", DevFmtUShort },
{ "int32", DevFmtInt },
{ "uint32", DevFmtUInt },
{ "float32", DevFmtFloat },
};
const ALCchar *fmt{typeopt->c_str()};
auto iter = std::find_if(std::begin(typelist), std::end(typelist),
[fmt](const TypeMap &entry) -> bool
{ return al::strcasecmp(entry.name, fmt) == 0; }
);
if(iter == std::end(typelist))
ERR("Unsupported sample-type: %s\n", fmt);
else
{
device->FmtType = iter->type;
device->Flags.set<SampleTypeRequest>();
}
}
if(ALuint freq{ConfigValueUInt(deviceName, nullptr, "frequency").value_or(0)})
{
if(freq < MIN_OUTPUT_RATE || freq > MAX_OUTPUT_RATE)
{
const ALuint newfreq{clampu(freq, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE)};
ERR("%uhz request clamped to %uhz\n", freq, newfreq);
freq = newfreq;
}
const double scale{static_cast<double>(freq) / device->Frequency};
device->UpdateSize = static_cast<ALuint>(device->UpdateSize*scale + 0.5);
device->BufferSize = static_cast<ALuint>(device->BufferSize*scale + 0.5);
device->Frequency = freq;
device->Flags.set<FrequencyRequest>();
}
if(auto persizeopt = ConfigValueUInt(deviceName, nullptr, "period_size"))
device->UpdateSize = clampu(*persizeopt, 64, 8192);
if(auto peropt = ConfigValueUInt(deviceName, nullptr, "periods"))
device->BufferSize = device->UpdateSize * clampu(*peropt, 2, 16);
else
device->BufferSize = maxu(device->BufferSize, device->UpdateSize*2);
if(auto srcsmax = ConfigValueUInt(deviceName, nullptr, "sources").value_or(0))
device->SourcesMax = srcsmax;
if(auto slotsmax = ConfigValueUInt(deviceName, nullptr, "slots").value_or(0))
device->AuxiliaryEffectSlotMax = minu(slotsmax, INT_MAX);
if(auto sendsopt = ConfigValueInt(deviceName, nullptr, "sends"))
device->NumAuxSends = minu(DEFAULT_SENDS,
static_cast<ALuint>(clampi(*sendsopt, 0, MAX_SENDS)));
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
if(auto ambiopt = ConfigValueStr(deviceName, nullptr, "ambi-format"))
{
const ALCchar *fmt{ambiopt->c_str()};
if(al::strcasecmp(fmt, "fuma") == 0)
{
if(device->mAmbiOrder > 3)
ERR("FuMa is incompatible with %d%s order ambisonics (up to third-order only)\n",
device->mAmbiOrder,
(((device->mAmbiOrder%100)/10) == 1) ? "th" :
((device->mAmbiOrder%10) == 1) ? "st" :
((device->mAmbiOrder%10) == 2) ? "nd" :
((device->mAmbiOrder%10) == 3) ? "rd" : "th");
else
{
device->mAmbiLayout = AmbiLayout::FuMa;
device->mAmbiScale = AmbiNorm::FuMa;
}
}
else if(al::strcasecmp(fmt, "ambix") == 0 || al::strcasecmp(fmt, "acn+sn3d") == 0)
{
device->mAmbiLayout = AmbiLayout::ACN;
device->mAmbiScale = AmbiNorm::SN3D;
}
else if(al::strcasecmp(fmt, "acn+n3d") == 0)
{
device->mAmbiLayout = AmbiLayout::ACN;
device->mAmbiScale = AmbiNorm::N3D;
}
else
ERR("Unsupported ambi-format: %s\n", fmt);
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created device %p, \"%s\"\n", decltype(std::declval<void*>()){device.get()},
device->DeviceName.c_str());
return device.release();
}
END_API_FUNC
ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device)
START_API_FUNC
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type == Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
/* Erase the device, and any remaining contexts left on it, from their
* respective lists.
*/
DeviceRef dev{*iter};
DeviceList.erase(iter);
std::unique_lock<std::mutex> statelock{dev->StateLock};
al::vector<ContextRef> orphanctxs;
for(ALCcontext *ctx : *dev->mContexts.load())
{
auto ctxiter = std::lower_bound(ContextList.begin(), ContextList.end(), ctx);
if(ctxiter != ContextList.end() && *ctxiter == ctx)
{
orphanctxs.emplace_back(ContextRef{*ctxiter});
ContextList.erase(ctxiter);
}
}
listlock.unlock();
for(ContextRef &context : orphanctxs)
{
WARN("Releasing orphaned context %p\n", decltype(std::declval<void*>()){context.get()});
context->deinit();
}
orphanctxs.clear();
if(dev->Flags.get<DeviceRunning>())
dev->Backend->stop();
dev->Flags.unset<DeviceRunning>();
return ALC_TRUE;
}
END_API_FUNC
/************************************************
* ALC capture functions
************************************************/
ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples)
START_API_FUNC
{
DO_INITCONFIG();
if(!CaptureFactory)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(samples <= 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
if(deviceName)
{
if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0
|| al::strcasecmp(deviceName, "openal-soft") == 0)
deviceName = nullptr;
}
DeviceRef device{new ALCdevice{Capture}};
auto decompfmt = DecomposeDevFormat(format);
if(!decompfmt)
{
alcSetError(nullptr, ALC_INVALID_ENUM);
return nullptr;
}
device->Frequency = frequency;
device->FmtChans = decompfmt->chans;
device->FmtType = decompfmt->type;
device->Flags.set<FrequencyRequest, ChannelsRequest, SampleTypeRequest>();
device->UpdateSize = static_cast<ALuint>(samples);
device->BufferSize = static_cast<ALuint>(samples);
try {
TRACE("Capture format: %s, %s, %uhz, %u / %u buffer\n",
DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType),
device->Frequency, device->UpdateSize, device->BufferSize);
auto backend = CaptureFactory->createBackend(device.get(), BackendType::Capture);
std::lock_guard<std::recursive_mutex> _{ListLock};
backend->open(deviceName);
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open capture device: %s\n", e.what());
alcSetError(nullptr, e.errorCode());
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created capture device %p, \"%s\"\n", decltype(std::declval<void*>()){device.get()},
device->DeviceName.c_str());
return device.release();
}
END_API_FUNC
ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device)
START_API_FUNC
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device);
if(iter == DeviceList.end() || *iter != device)
{
alcSetError(nullptr, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
if((*iter)->Type != Capture)
{
alcSetError(*iter, ALC_INVALID_DEVICE);
return ALC_FALSE;
}
DeviceRef dev{*iter};
DeviceList.erase(iter);
listlock.unlock();
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.get<DeviceRunning>())
dev->Backend->stop();
dev->Flags.unset<DeviceRunning>();
return ALC_TRUE;
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> _{dev->StateLock};
if(!dev->Connected.load(std::memory_order_acquire))
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(!dev->Flags.get<DeviceRunning>())
{
try {
auto backend = dev->Backend.get();
backend->start();
dev->Flags.set<DeviceRunning>();
}
catch(al::backend_exception& e) {
aluHandleDisconnect(dev.get(), "%s", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
}
}
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.get<DeviceRunning>())
dev->Backend->stop();
dev->Flags.unset<DeviceRunning>();
}
}
END_API_FUNC
ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Capture)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
if(samples < 0 || (samples > 0 && buffer == nullptr))
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
if(samples < 1)
return;
std::lock_guard<std::mutex> _{dev->StateLock};
BackendBase *backend{dev->Backend.get()};
const auto usamples = static_cast<ALCuint>(samples);
if(usamples > backend->availableSamples())
{
alcSetError(dev.get(), ALC_INVALID_VALUE);
return;
}
auto *bbuffer = static_cast<al::byte*>(buffer);
if(ALCenum err{backend->captureSamples(bbuffer, usamples)})
alcSetError(dev.get(), err);
}
END_API_FUNC
/************************************************
* ALC loopback functions
************************************************/
/** Open a loopback device, for manual rendering. */
ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName)
START_API_FUNC
{
DO_INITCONFIG();
/* Make sure the device name, if specified, is us. */
if(deviceName && strcmp(deviceName, alcDefaultName) != 0)
{
alcSetError(nullptr, ALC_INVALID_VALUE);
return nullptr;
}
DeviceRef device{new ALCdevice{Loopback}};
device->SourcesMax = 256;
device->AuxiliaryEffectSlotMax = 64;
device->NumAuxSends = DEFAULT_SENDS;
//Set output format
device->BufferSize = 0;
device->UpdateSize = 0;
device->Frequency = DEFAULT_OUTPUT_RATE;
device->FmtChans = DevFmtChannelsDefault;
device->FmtType = DevFmtTypeDefault;
if(auto srcsmax = ConfigValueUInt(nullptr, nullptr, "sources").value_or(0))
device->SourcesMax = srcsmax;
if(auto slotsmax = ConfigValueUInt(nullptr, nullptr, "slots").value_or(0))
device->AuxiliaryEffectSlotMax = minu(slotsmax, INT_MAX);
if(auto sendsopt = ConfigValueInt(nullptr, nullptr, "sends"))
device->NumAuxSends = minu(DEFAULT_SENDS,
static_cast<ALuint>(clampi(*sendsopt, 0, MAX_SENDS)));
device->NumStereoSources = 1;
device->NumMonoSources = device->SourcesMax - device->NumStereoSources;
try {
auto backend = LoopbackBackendFactory::getFactory().createBackend(device.get(),
BackendType::Playback);
backend->open("Loopback");
device->Backend = std::move(backend);
}
catch(al::backend_exception &e) {
WARN("Failed to open loopback device: %s\n", e.what());
alcSetError(nullptr, e.errorCode());
return nullptr;
}
{
std::lock_guard<std::recursive_mutex> _{ListLock};
auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get());
DeviceList.emplace(iter, device.get());
}
TRACE("Created loopback device %p\n", decltype(std::declval<void*>()){device.get()});
return device.release();
}
END_API_FUNC
/**
* Determines if the loopback device supports the given format for rendering.
*/
ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Loopback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(freq <= 0)
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
{
if(IsValidALCType(type) && IsValidALCChannels(channels) && freq >= MIN_OUTPUT_RATE
&& freq <= MAX_OUTPUT_RATE)
return ALC_TRUE;
}
return ALC_FALSE;
}
END_API_FUNC
/**
* Renders some samples into a buffer, using the format last set by the
* attributes given to alcCreateContext.
*/
FORCE_ALIGN ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Loopback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else if(samples < 0 || (samples > 0 && buffer == nullptr))
alcSetError(dev.get(), ALC_INVALID_VALUE);
else
aluMixData(dev.get(), buffer, static_cast<ALuint>(samples), dev->channelsFromFmt());
}
END_API_FUNC
/************************************************
* ALC DSP pause/resume functions
************************************************/
/** Pause the DSP to stop audio processing. */
ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Playback)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else
{
std::lock_guard<std::mutex> _{dev->StateLock};
if(dev->Flags.get<DeviceRunning>())
dev->Backend->stop();
dev->Flags.unset<DeviceRunning>();
dev->Flags.set<DevicePaused>();
}
}
END_API_FUNC
/** Resume the DSP to restart audio processing. */
ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type != Playback)
{
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return;
}
std::lock_guard<std::mutex> _{dev->StateLock};
if(!dev->Flags.get<DevicePaused>())
return;
dev->Flags.unset<DevicePaused>();
if(dev->mContexts.load()->empty())
return;
try {
auto backend = dev->Backend.get();
backend->start();
dev->Flags.set<DeviceRunning>();
}
catch(al::backend_exception& e) {
aluHandleDisconnect(dev.get(), "%s", e.what());
alcSetError(dev.get(), ALC_INVALID_DEVICE);
}
}
END_API_FUNC
/************************************************
* ALC HRTF functions
************************************************/
/** Gets a string parameter at the given index. */
ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index)
START_API_FUNC
{
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == Capture)
alcSetError(dev.get(), ALC_INVALID_DEVICE);
else switch(paramName)
{
case ALC_HRTF_SPECIFIER_SOFT:
if(index >= 0 && static_cast<size_t>(index) < dev->HrtfList.size())
return dev->HrtfList[static_cast<ALuint>(index)].c_str();
alcSetError(dev.get(), ALC_INVALID_VALUE);
break;
default:
alcSetError(dev.get(), ALC_INVALID_ENUM);
break;
}
return nullptr;
}
END_API_FUNC
/** Resets the given device output, using the specified attribute list. */
ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs)
START_API_FUNC
{
std::unique_lock<std::recursive_mutex> listlock{ListLock};
DeviceRef dev{VerifyDevice(device)};
if(!dev || dev->Type == Capture)
{
listlock.unlock();
alcSetError(dev.get(), ALC_INVALID_DEVICE);
return ALC_FALSE;
}
std::lock_guard<std::mutex> _{dev->StateLock};
listlock.unlock();
/* Force the backend to stop mixing first since we're resetting. Also reset
* the connected state so lost devices can attempt recover.
*/
if(dev->Flags.get<DeviceRunning>())
dev->Backend->stop();
dev->Flags.unset<DeviceRunning>();
if(!dev->Connected.load(std::memory_order_relaxed))
{
/* Make sure disconnection is finished before continuing on. */
dev->waitForMix();
for(ALCcontext *ctx : *dev->mContexts.load(std::memory_order_acquire))
{
/* Clear any pending voice changes and reallocate voices to get a
* clean restart.
*/
std::lock_guard<std::mutex> __{ctx->mSourceLock};
auto *vchg = ctx->mCurrentVoiceChange.load(std::memory_order_acquire);
while(auto *next = vchg->mNext.load(std::memory_order_acquire))
vchg = next;
ctx->mCurrentVoiceChange.store(vchg, std::memory_order_release);
ctx->mVoiceClusters.clear();
ctx->allocVoices(std::max<size_t>(256,
ctx->mActiveVoiceCount.load(std::memory_order_relaxed)));
}
dev->Connected.store(true);
}
ALCenum err{UpdateDeviceParams(dev.get(), attribs)};
if LIKELY(err == ALC_NO_ERROR) return ALC_TRUE;
alcSetError(dev.get(), err);
return ALC_FALSE;
}
END_API_FUNC