openal-soft/common/alnumeric.h
2020-09-01 15:55:48 -07:00

362 lines
10 KiB
C++

#ifndef AL_NUMERIC_H
#define AL_NUMERIC_H
#include <cstddef>
#include <cstdint>
#ifdef HAVE_INTRIN_H
#include <intrin.h>
#endif
#ifdef HAVE_SSE_INTRINSICS
#include <xmmintrin.h>
#endif
#include "opthelpers.h"
inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
constexpr inline float minf(float a, float b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline float maxf(float a, float b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline float clampf(float val, float min, float max) noexcept
{ return minf(max, maxf(min, val)); }
constexpr inline double mind(double a, double b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline double maxd(double a, double b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline double clampd(double val, double min, double max) noexcept
{ return mind(max, maxd(min, val)); }
constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
{ return minu(max, maxu(min, val)); }
constexpr inline int mini(int a, int b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline int maxi(int a, int b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline int clampi(int val, int min, int max) noexcept
{ return mini(max, maxi(min, val)); }
constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
{ return mini64(max, maxi64(min, val)); }
constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
{ return minu64(max, maxu64(min, val)); }
constexpr inline size_t minz(size_t a, size_t b) noexcept
{ return ((a > b) ? b : a); }
constexpr inline size_t maxz(size_t a, size_t b) noexcept
{ return ((a > b) ? a : b); }
constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
{ return minz(max, maxz(min, val)); }
/** Find the next power-of-2 for non-power-of-2 numbers. */
inline uint32_t NextPowerOf2(uint32_t value) noexcept
{
if(value > 0)
{
value--;
value |= value>>1;
value |= value>>2;
value |= value>>4;
value |= value>>8;
value |= value>>16;
}
return value+1;
}
/** Round up a value to the next multiple. */
inline size_t RoundUp(size_t value, size_t r) noexcept
{
value += r-1;
return value - (value%r);
}
/* Define CTZ macros (count trailing zeros), and POPCNT macros (population
* count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
* are *UNDEFINED* if the value is 0.
*/
#ifdef __GNUC__
namespace detail_ {
template<typename T>
constexpr inline auto popcnt64(T val) = delete;
template<>
constexpr inline auto popcnt64(unsigned long long val) { return __builtin_popcountll(val); }
template<>
constexpr inline auto popcnt64(unsigned long val) { return __builtin_popcountl(val); }
template<typename T>
constexpr inline auto ctz64(T val) = delete;
template<>
constexpr inline auto ctz64(unsigned long long val) { return __builtin_ctzll(val); }
template<>
constexpr inline auto ctz64(unsigned long val) { return __builtin_ctzl(val); }
} // namespace detail_
#define POPCNT32 __builtin_popcount
#define CTZ32 __builtin_ctz
#define POPCNT64 detail_::popcnt64<uint64_t>
#define CTZ64 detail_::ctz64<uint64_t>
#else
/* There be black magics here. The popcnt method is derived from
* https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
* while the ctz-utilizing-popcnt algorithm is shown here
* http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
* as the ntz2 variant. These likely aren't the most efficient methods, but
* they're good enough if the GCC built-ins aren't available.
*/
inline int fallback_popcnt32(uint32_t v)
{
v = v - ((v >> 1) & 0x55555555u);
v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
v = (v + (v >> 4)) & 0x0f0f0f0fu;
return (int)((v * 0x01010101u) >> 24);
}
#define POPCNT32 fallback_popcnt32
inline int fallback_popcnt64(uint64_t v)
{
v = v - ((v >> 1) & 0x5555555555555555_u64);
v = (v & 0x3333333333333333_u64) + ((v >> 2) & 0x3333333333333333_u64);
v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f_u64;
return (int)((v * 0x0101010101010101_u64) >> 56);
}
#define POPCNT64 fallback_popcnt64
#if defined(_WIN64)
inline int msvc64_ctz32(uint32_t v)
{
unsigned long idx = 32;
_BitScanForward(&idx, v);
return (int)idx;
}
#define CTZ32 msvc64_ctz32
inline int msvc64_ctz64(uint64_t v)
{
unsigned long idx = 64;
_BitScanForward64(&idx, v);
return (int)idx;
}
#define CTZ64 msvc64_ctz64
#elif defined(_WIN32)
inline int msvc_ctz32(uint32_t v)
{
unsigned long idx = 32;
_BitScanForward(&idx, v);
return (int)idx;
}
#define CTZ32 msvc_ctz32
inline int msvc_ctz64(uint64_t v)
{
unsigned long idx = 64;
if(!_BitScanForward(&idx, (uint32_t)(v&0xffffffff)))
{
if(_BitScanForward(&idx, (uint32_t)(v>>32)))
idx += 32;
}
return (int)idx;
}
#define CTZ64 msvc_ctz64
#else
inline int fallback_ctz32(uint32_t value)
{ return POPCNT32(~value & (value - 1)); }
#define CTZ32 fallback_ctz32
inline int fallback_ctz64(uint64_t value)
{ return POPCNT64(~value & (value - 1)); }
#define CTZ64 fallback_ctz64
#endif
#endif
/**
* Fast float-to-int conversion. No particular rounding mode is assumed; the
* IEEE-754 default is round-to-nearest with ties-to-even, though an app could
* change it on its own threads. On some systems, a truncating conversion may
* always be the fastest method.
*/
inline int fastf2i(float f) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvt_ss2si(_mm_set_ss(f));
#elif defined(_MSC_VER) && defined(_M_IX86_FP)
int i;
__asm fld f
__asm fistp i
return i;
#elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
int i;
#ifdef __SSE_MATH__
__asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
#else
__asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
#endif
return i;
#else
return static_cast<int>(f);
#endif
}
inline unsigned int fastf2u(float f) noexcept
{ return static_cast<unsigned int>(fastf2i(f)); }
/** Converts float-to-int using standard behavior (truncation). */
inline int float2int(float f) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvtt_ss2si(_mm_set_ss(f));
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE_MATH__))
int sign, shift, mant;
union {
float f;
int i;
} conv;
conv.f = f;
sign = (conv.i>>31) | 1;
shift = ((conv.i>>23)&0xff) - (127+23);
/* Over/underflow */
if UNLIKELY(shift >= 31 || shift < -23)
return 0;
mant = (conv.i&0x7fffff) | 0x800000;
if LIKELY(shift < 0)
return (mant >> -shift) * sign;
return (mant << shift) * sign;
#else
return static_cast<int>(f);
#endif
}
inline unsigned int float2uint(float f) noexcept
{ return static_cast<unsigned int>(float2int(f)); }
/** Converts double-to-int using standard behavior (truncation). */
inline int double2int(double d) noexcept
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvttsd_si32(_mm_set_sd(d));
#elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
|| ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE2_MATH__))
int sign, shift;
int64_t mant;
union {
double d;
int64_t i64;
} conv;
conv.d = d;
sign = (conv.i64 >> 63) | 1;
shift = ((conv.i64 >> 52) & 0x7ff) - (1023 + 52);
/* Over/underflow */
if UNLIKELY(shift >= 63 || shift < -52)
return 0;
mant = (conv.i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64;
if LIKELY(shift < 0)
return (int)(mant >> -shift) * sign;
return (int)(mant << shift) * sign;
#else
return static_cast<int>(d);
#endif
}
/**
* Rounds a float to the nearest integral value, according to the current
* rounding mode. This is essentially an inlined version of rintf, although
* makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
*/
inline float fast_roundf(float f) noexcept
{
#if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
&& !defined(__SSE_MATH__)
float out;
__asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
return out;
#else
/* Integral limit, where sub-integral precision is not available for
* floats.
*/
static const float ilim[2]{
8388608.0f /* 0x1.0p+23 */,
-8388608.0f /* -0x1.0p+23 */
};
unsigned int sign, expo;
union {
float f;
unsigned int i;
} conv;
conv.f = f;
sign = (conv.i>>31)&0x01;
expo = (conv.i>>23)&0xff;
if UNLIKELY(expo >= 150/*+23*/)
{
/* An exponent (base-2) of 23 or higher is incapable of sub-integral
* precision, so it's already an integral value. We don't need to worry
* about infinity or NaN here.
*/
return f;
}
/* Adding the integral limit to the value (with a matching sign) forces a
* result that has no sub-integral precision, and is consequently forced to
* round to an integral value. Removing the integral limit then restores
* the initial value rounded to the integral. The compiler should not
* optimize this out because of non-associative rules on floating-point
* math (as long as you don't use -fassociative-math,
* -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
* may break).
*/
f += ilim[sign];
return f - ilim[sign];
#endif
}
#endif /* AL_NUMERIC_H */