541 lines
18 KiB
C++
541 lines
18 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2013 by Mike Gorchak
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "AL/efx.h"
|
|
|
|
#include "al/auxeffectslot.h"
|
|
#include "alcmain.h"
|
|
#include "alcontext.h"
|
|
#include "almalloc.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "alu.h"
|
|
#include "ambidefs.h"
|
|
#include "effects/base.h"
|
|
#include "math_defs.h"
|
|
#include "opthelpers.h"
|
|
#include "vector.h"
|
|
|
|
|
|
namespace {
|
|
|
|
static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch");
|
|
static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch");
|
|
|
|
enum class WaveForm {
|
|
Sinusoid,
|
|
Triangle
|
|
};
|
|
|
|
#define MAX_UPDATE_SAMPLES 256
|
|
|
|
struct ChorusState final : public EffectState {
|
|
al::vector<float,16> mSampleBuffer;
|
|
ALuint mOffset{0};
|
|
|
|
ALuint mLfoOffset{0};
|
|
ALuint mLfoRange{1};
|
|
float mLfoScale{0.0f};
|
|
ALuint mLfoDisp{0};
|
|
|
|
/* Gains for left and right sides */
|
|
struct {
|
|
float Current[MAX_OUTPUT_CHANNELS]{};
|
|
float Target[MAX_OUTPUT_CHANNELS]{};
|
|
} mGains[2];
|
|
|
|
/* effect parameters */
|
|
WaveForm mWaveform{};
|
|
int mDelay{0};
|
|
float mDepth{0.0f};
|
|
float mFeedback{0.0f};
|
|
|
|
void getTriangleDelays(ALuint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo);
|
|
void getSinusoidDelays(ALuint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo);
|
|
|
|
void deviceUpdate(const ALCdevice *device) override;
|
|
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
DEF_NEWDEL(ChorusState)
|
|
};
|
|
|
|
void ChorusState::deviceUpdate(const ALCdevice *Device)
|
|
{
|
|
constexpr float max_delay{maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY)};
|
|
|
|
const auto frequency = static_cast<float>(Device->Frequency);
|
|
const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)};
|
|
if(maxlen != mSampleBuffer.size())
|
|
al::vector<float,16>(maxlen).swap(mSampleBuffer);
|
|
|
|
std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
|
|
for(auto &e : mGains)
|
|
{
|
|
std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
|
|
std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
|
|
}
|
|
}
|
|
|
|
void ChorusState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target)
|
|
{
|
|
constexpr ALsizei mindelay{(MAX_RESAMPLER_PADDING>>1) << FRACTIONBITS};
|
|
|
|
switch(props->Chorus.Waveform)
|
|
{
|
|
case AL_CHORUS_WAVEFORM_TRIANGLE:
|
|
mWaveform = WaveForm::Triangle;
|
|
break;
|
|
case AL_CHORUS_WAVEFORM_SINUSOID:
|
|
mWaveform = WaveForm::Sinusoid;
|
|
break;
|
|
}
|
|
|
|
/* The LFO depth is scaled to be relative to the sample delay. Clamp the
|
|
* delay and depth to allow enough padding for resampling.
|
|
*/
|
|
const ALCdevice *device{Context->mDevice.get()};
|
|
const auto frequency = static_cast<float>(device->Frequency);
|
|
|
|
mDelay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay);
|
|
mDepth = minf(props->Chorus.Depth * static_cast<float>(mDelay),
|
|
static_cast<float>(mDelay - mindelay));
|
|
|
|
mFeedback = props->Chorus.Feedback;
|
|
|
|
/* Gains for left and right sides */
|
|
const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
|
|
const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
ComputePanGains(target.Main, lcoeffs.data(), Slot->Params.Gain, mGains[0].Target);
|
|
ComputePanGains(target.Main, rcoeffs.data(), Slot->Params.Gain, mGains[1].Target);
|
|
|
|
float rate{props->Chorus.Rate};
|
|
if(!(rate > 0.0f))
|
|
{
|
|
mLfoOffset = 0;
|
|
mLfoRange = 1;
|
|
mLfoScale = 0.0f;
|
|
mLfoDisp = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Calculate LFO coefficient (number of samples per cycle). Limit the
|
|
* max range to avoid overflow when calculating the displacement.
|
|
*/
|
|
ALuint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))};
|
|
|
|
mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
|
|
mLfoRange = lfo_range;
|
|
switch(mWaveform)
|
|
{
|
|
case WaveForm::Triangle:
|
|
mLfoScale = 4.0f / static_cast<float>(mLfoRange);
|
|
break;
|
|
case WaveForm::Sinusoid:
|
|
mLfoScale = al::MathDefs<float>::Tau() / static_cast<float>(mLfoRange);
|
|
break;
|
|
}
|
|
|
|
/* Calculate lfo phase displacement */
|
|
int phase{props->Chorus.Phase};
|
|
if(phase < 0) phase = 360 + phase;
|
|
mLfoDisp = (mLfoRange*static_cast<ALuint>(phase) + 180) / 360;
|
|
}
|
|
}
|
|
|
|
|
|
void ChorusState::getTriangleDelays(ALuint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo)
|
|
{
|
|
const ALuint lfo_range{mLfoRange};
|
|
const float lfo_scale{mLfoScale};
|
|
const float depth{mDepth};
|
|
const int delay{mDelay};
|
|
|
|
ASSUME(lfo_range > 0);
|
|
ASSUME(todo > 0);
|
|
|
|
ALuint offset{mLfoOffset};
|
|
auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALuint
|
|
{
|
|
offset = (offset+1)%lfo_range;
|
|
const float offset_norm{static_cast<float>(offset) * lfo_scale};
|
|
return static_cast<ALuint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
|
|
};
|
|
std::generate_n(delays[0], todo, gen_lfo);
|
|
|
|
offset = (mLfoOffset+mLfoDisp) % lfo_range;
|
|
std::generate_n(delays[1], todo, gen_lfo);
|
|
|
|
mLfoOffset = static_cast<ALuint>(mLfoOffset+todo) % lfo_range;
|
|
}
|
|
|
|
void ChorusState::getSinusoidDelays(ALuint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo)
|
|
{
|
|
const ALuint lfo_range{mLfoRange};
|
|
const float lfo_scale{mLfoScale};
|
|
const float depth{mDepth};
|
|
const int delay{mDelay};
|
|
|
|
ASSUME(lfo_range > 0);
|
|
ASSUME(todo > 0);
|
|
|
|
ALuint offset{mLfoOffset};
|
|
auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALuint
|
|
{
|
|
offset = (offset+1)%lfo_range;
|
|
const float offset_norm{static_cast<float>(offset) * lfo_scale};
|
|
return static_cast<ALuint>(fastf2i(std::sin(offset_norm)*depth) + delay);
|
|
};
|
|
std::generate_n(delays[0], todo, gen_lfo);
|
|
|
|
offset = (mLfoOffset+mLfoDisp) % lfo_range;
|
|
std::generate_n(delays[1], todo, gen_lfo);
|
|
|
|
mLfoOffset = static_cast<ALuint>(mLfoOffset+todo) % lfo_range;
|
|
}
|
|
|
|
void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
const size_t bufmask{mSampleBuffer.size()-1};
|
|
const float feedback{mFeedback};
|
|
const ALuint avgdelay{(static_cast<ALuint>(mDelay) + (FRACTIONONE>>1)) >> FRACTIONBITS};
|
|
float *RESTRICT delaybuf{mSampleBuffer.data()};
|
|
ALuint offset{mOffset};
|
|
|
|
for(size_t base{0u};base < samplesToDo;)
|
|
{
|
|
const size_t todo{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
|
|
|
|
ALuint moddelays[2][MAX_UPDATE_SAMPLES];
|
|
if(mWaveform == WaveForm::Sinusoid)
|
|
getSinusoidDelays(moddelays, todo);
|
|
else /*if(mWaveform == WaveForm::Triangle)*/
|
|
getTriangleDelays(moddelays, todo);
|
|
|
|
alignas(16) float temps[2][MAX_UPDATE_SAMPLES];
|
|
for(size_t i{0u};i < todo;++i)
|
|
{
|
|
// Feed the buffer's input first (necessary for delays < 1).
|
|
delaybuf[offset&bufmask] = samplesIn[0][base+i];
|
|
|
|
// Tap for the left output.
|
|
ALuint delay{offset - (moddelays[0][i]>>FRACTIONBITS)};
|
|
float mu{static_cast<float>(moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE)};
|
|
temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
|
|
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
|
|
|
|
// Tap for the right output.
|
|
delay = offset - (moddelays[1][i]>>FRACTIONBITS);
|
|
mu = static_cast<float>(moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
|
|
temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
|
|
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
|
|
|
|
// Accumulate feedback from the average delay of the taps.
|
|
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
|
|
++offset;
|
|
}
|
|
|
|
for(ALsizei c{0};c < 2;++c)
|
|
MixSamples({temps[c], todo}, samplesOut, mGains[c].Current, mGains[c].Target,
|
|
samplesToDo-base, base);
|
|
|
|
base += todo;
|
|
}
|
|
|
|
mOffset = offset;
|
|
}
|
|
|
|
|
|
void Chorus_setParami(EffectProps *props, ALenum param, int val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_WAVEFORM:
|
|
if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM))
|
|
throw effect_exception{AL_INVALID_VALUE, "Invalid chorus waveform"};
|
|
props->Chorus.Waveform = val;
|
|
break;
|
|
|
|
case AL_CHORUS_PHASE:
|
|
if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE))
|
|
throw effect_exception{AL_INVALID_VALUE, "Chorus phase out of range"};
|
|
props->Chorus.Phase = val;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param};
|
|
}
|
|
}
|
|
void Chorus_setParamiv(EffectProps *props, ALenum param, const int *vals)
|
|
{ Chorus_setParami(props, param, vals[0]); }
|
|
void Chorus_setParamf(EffectProps *props, ALenum param, float val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_RATE:
|
|
if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE))
|
|
throw effect_exception{AL_INVALID_VALUE, "Chorus rate out of range"};
|
|
props->Chorus.Rate = val;
|
|
break;
|
|
|
|
case AL_CHORUS_DEPTH:
|
|
if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH))
|
|
throw effect_exception{AL_INVALID_VALUE, "Chorus depth out of range"};
|
|
props->Chorus.Depth = val;
|
|
break;
|
|
|
|
case AL_CHORUS_FEEDBACK:
|
|
if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK))
|
|
throw effect_exception{AL_INVALID_VALUE, "Chorus feedback out of range"};
|
|
props->Chorus.Feedback = val;
|
|
break;
|
|
|
|
case AL_CHORUS_DELAY:
|
|
if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY))
|
|
throw effect_exception{AL_INVALID_VALUE, "Chorus delay out of range"};
|
|
props->Chorus.Delay = val;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param};
|
|
}
|
|
}
|
|
void Chorus_setParamfv(EffectProps *props, ALenum param, const float *vals)
|
|
{ Chorus_setParamf(props, param, vals[0]); }
|
|
|
|
void Chorus_getParami(const EffectProps *props, ALenum param, int *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_WAVEFORM:
|
|
*val = props->Chorus.Waveform;
|
|
break;
|
|
|
|
case AL_CHORUS_PHASE:
|
|
*val = props->Chorus.Phase;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param};
|
|
}
|
|
}
|
|
void Chorus_getParamiv(const EffectProps *props, ALenum param, int *vals)
|
|
{ Chorus_getParami(props, param, vals); }
|
|
void Chorus_getParamf(const EffectProps *props, ALenum param, float *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_CHORUS_RATE:
|
|
*val = props->Chorus.Rate;
|
|
break;
|
|
|
|
case AL_CHORUS_DEPTH:
|
|
*val = props->Chorus.Depth;
|
|
break;
|
|
|
|
case AL_CHORUS_FEEDBACK:
|
|
*val = props->Chorus.Feedback;
|
|
break;
|
|
|
|
case AL_CHORUS_DELAY:
|
|
*val = props->Chorus.Delay;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param};
|
|
}
|
|
}
|
|
void Chorus_getParamfv(const EffectProps *props, ALenum param, float *vals)
|
|
{ Chorus_getParamf(props, param, vals); }
|
|
|
|
DEFINE_ALEFFECT_VTABLE(Chorus);
|
|
|
|
|
|
struct ChorusStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override { return new ChorusState{}; }
|
|
EffectProps getDefaultProps() const noexcept override;
|
|
const EffectVtable *getEffectVtable() const noexcept override { return &Chorus_vtable; }
|
|
};
|
|
|
|
EffectProps ChorusStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
EffectProps props{};
|
|
props.Chorus.Waveform = AL_CHORUS_DEFAULT_WAVEFORM;
|
|
props.Chorus.Phase = AL_CHORUS_DEFAULT_PHASE;
|
|
props.Chorus.Rate = AL_CHORUS_DEFAULT_RATE;
|
|
props.Chorus.Depth = AL_CHORUS_DEFAULT_DEPTH;
|
|
props.Chorus.Feedback = AL_CHORUS_DEFAULT_FEEDBACK;
|
|
props.Chorus.Delay = AL_CHORUS_DEFAULT_DELAY;
|
|
return props;
|
|
}
|
|
|
|
|
|
void Flanger_setParami(EffectProps *props, ALenum param, int val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_WAVEFORM:
|
|
if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
|
|
throw effect_exception{AL_INVALID_VALUE, "Invalid flanger waveform"};
|
|
props->Chorus.Waveform = val;
|
|
break;
|
|
|
|
case AL_FLANGER_PHASE:
|
|
if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
|
|
throw effect_exception{AL_INVALID_VALUE, "Flanger phase out of range"};
|
|
props->Chorus.Phase = val;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param};
|
|
}
|
|
}
|
|
void Flanger_setParamiv(EffectProps *props, ALenum param, const int *vals)
|
|
{ Flanger_setParami(props, param, vals[0]); }
|
|
void Flanger_setParamf(EffectProps *props, ALenum param, float val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_RATE:
|
|
if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
|
|
throw effect_exception{AL_INVALID_VALUE, "Flanger rate out of range"};
|
|
props->Chorus.Rate = val;
|
|
break;
|
|
|
|
case AL_FLANGER_DEPTH:
|
|
if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
|
|
throw effect_exception{AL_INVALID_VALUE, "Flanger depth out of range"};
|
|
props->Chorus.Depth = val;
|
|
break;
|
|
|
|
case AL_FLANGER_FEEDBACK:
|
|
if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
|
|
throw effect_exception{AL_INVALID_VALUE, "Flanger feedback out of range"};
|
|
props->Chorus.Feedback = val;
|
|
break;
|
|
|
|
case AL_FLANGER_DELAY:
|
|
if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
|
|
throw effect_exception{AL_INVALID_VALUE, "Flanger delay out of range"};
|
|
props->Chorus.Delay = val;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param};
|
|
}
|
|
}
|
|
void Flanger_setParamfv(EffectProps *props, ALenum param, const float *vals)
|
|
{ Flanger_setParamf(props, param, vals[0]); }
|
|
|
|
void Flanger_getParami(const EffectProps *props, ALenum param, int *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_WAVEFORM:
|
|
*val = props->Chorus.Waveform;
|
|
break;
|
|
|
|
case AL_FLANGER_PHASE:
|
|
*val = props->Chorus.Phase;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param};
|
|
}
|
|
}
|
|
void Flanger_getParamiv(const EffectProps *props, ALenum param, int *vals)
|
|
{ Flanger_getParami(props, param, vals); }
|
|
void Flanger_getParamf(const EffectProps *props, ALenum param, float *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_FLANGER_RATE:
|
|
*val = props->Chorus.Rate;
|
|
break;
|
|
|
|
case AL_FLANGER_DEPTH:
|
|
*val = props->Chorus.Depth;
|
|
break;
|
|
|
|
case AL_FLANGER_FEEDBACK:
|
|
*val = props->Chorus.Feedback;
|
|
break;
|
|
|
|
case AL_FLANGER_DELAY:
|
|
*val = props->Chorus.Delay;
|
|
break;
|
|
|
|
default:
|
|
throw effect_exception{AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param};
|
|
}
|
|
}
|
|
void Flanger_getParamfv(const EffectProps *props, ALenum param, float *vals)
|
|
{ Flanger_getParamf(props, param, vals); }
|
|
|
|
DEFINE_ALEFFECT_VTABLE(Flanger);
|
|
|
|
|
|
/* Flanger is basically a chorus with a really short delay. They can both use
|
|
* the same processing functions, so piggyback flanger on the chorus functions.
|
|
*/
|
|
struct FlangerStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override { return new ChorusState{}; }
|
|
EffectProps getDefaultProps() const noexcept override;
|
|
const EffectVtable *getEffectVtable() const noexcept override { return &Flanger_vtable; }
|
|
};
|
|
|
|
EffectProps FlangerStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
EffectProps props{};
|
|
props.Chorus.Waveform = AL_FLANGER_DEFAULT_WAVEFORM;
|
|
props.Chorus.Phase = AL_FLANGER_DEFAULT_PHASE;
|
|
props.Chorus.Rate = AL_FLANGER_DEFAULT_RATE;
|
|
props.Chorus.Depth = AL_FLANGER_DEFAULT_DEPTH;
|
|
props.Chorus.Feedback = AL_FLANGER_DEFAULT_FEEDBACK;
|
|
props.Chorus.Delay = AL_FLANGER_DEFAULT_DELAY;
|
|
return props;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *ChorusStateFactory_getFactory()
|
|
{
|
|
static ChorusStateFactory ChorusFactory{};
|
|
return &ChorusFactory;
|
|
}
|
|
|
|
EffectStateFactory *FlangerStateFactory_getFactory()
|
|
{
|
|
static FlangerStateFactory FlangerFactory{};
|
|
return &FlangerFactory;
|
|
}
|