openal-soft/al/buffer.cpp
2019-07-30 09:05:54 -07:00

1409 lines
47 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "buffer.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <mutex>
#include <new>
#include <utility>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "albyte.h"
#include "alcmain.h"
#include "alcontext.h"
#include "alexcpt.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "atomic.h"
#include "error.h"
#include "inprogext.h"
#include "opthelpers.h"
namespace {
/* IMA ADPCM Stepsize table */
constexpr int IMAStep_size[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19,
21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55,
60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157,
173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449,
494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660,
4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,
11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794,
32767
};
/* IMA4 ADPCM Codeword decode table */
constexpr int IMA4Codeword[16] = {
1, 3, 5, 7, 9, 11, 13, 15,
-1,-3,-5,-7,-9,-11,-13,-15,
};
/* IMA4 ADPCM Step index adjust decode table */
constexpr int IMA4Index_adjust[16] = {
-1,-1,-1,-1, 2, 4, 6, 8,
-1,-1,-1,-1, 2, 4, 6, 8
};
/* MSADPCM Adaption table */
constexpr int MSADPCMAdaption[16] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
/* MSADPCM Adaption Coefficient tables */
constexpr int MSADPCMAdaptionCoeff[7][2] = {
{ 256, 0 },
{ 512, -256 },
{ 0, 0 },
{ 192, 64 },
{ 240, 0 },
{ 460, -208 },
{ 392, -232 }
};
void DecodeIMA4Block(ALshort *dst, const al::byte *src, ALint numchans, ALsizei align)
{
ALint sample[MAX_INPUT_CHANNELS]{};
ALint index[MAX_INPUT_CHANNELS]{};
ALuint code[MAX_INPUT_CHANNELS]{};
for(int c{0};c < numchans;c++)
{
sample[c] = al::to_integer<int>(src[0]) | (al::to_integer<int>(src[1])<<8);
sample[c] = (sample[c]^0x8000) - 32768;
src += 2;
index[c] = al::to_integer<int>(src[0]) | (al::to_integer<int>(src[1])<<8);
index[c] = clampi((index[c]^0x8000) - 32768, 0, 88);
src += 2;
*(dst++) = sample[c];
}
for(int i{1};i < align;i++)
{
if((i&7) == 1)
{
for(int c{0};c < numchans;c++)
{
code[c] = al::to_integer<ALuint>(src[0]) | (al::to_integer<ALuint>(src[1])<< 8) |
(al::to_integer<ALuint>(src[2])<<16) | (al::to_integer<ALuint>(src[3])<<24);
src += 4;
}
}
for(int c{0};c < numchans;c++)
{
const ALuint nibble{code[c]&0xf};
code[c] >>= 4;
sample[c] += IMA4Codeword[nibble] * IMAStep_size[index[c]] / 8;
sample[c] = clampi(sample[c], -32768, 32767);
index[c] += IMA4Index_adjust[nibble];
index[c] = clampi(index[c], 0, 88);
*(dst++) = sample[c];
}
}
}
void DecodeMSADPCMBlock(ALshort *dst, const al::byte *src, ALint numchans, ALsizei align)
{
ALubyte blockpred[MAX_INPUT_CHANNELS]{};
ALint delta[MAX_INPUT_CHANNELS]{};
ALshort samples[MAX_INPUT_CHANNELS][2]{};
for(int c{0};c < numchans;c++)
{
blockpred[c] = minu(al::to_integer<ALubyte>(src[0]), 6);
++src;
}
for(int c{0};c < numchans;c++)
{
delta[c] = al::to_integer<int>(src[0]) | (al::to_integer<int>(src[1])<<8);
delta[c] = (delta[c]^0x8000) - 32768;
src += 2;
}
for(int c{0};c < numchans;c++)
{
samples[c][0] = al::to_integer<short>(src[0]) | (al::to_integer<short>(src[1])<<8);
samples[c][0] = (samples[c][0]^0x8000) - 32768;
src += 2;
}
for(int c{0};c < numchans;c++)
{
samples[c][1] = al::to_integer<short>(src[0]) | (al::to_integer<short>(src[1])<<8);
samples[c][1] = (samples[c][1]^0x8000) - 32768;
src += 2;
}
/* Second sample is written first. */
for(int c{0};c < numchans;c++)
*(dst++) = samples[c][1];
for(int c{0};c < numchans;c++)
*(dst++) = samples[c][0];
int num{0};
for(int i{2};i < align;i++)
{
for(int c{0};c < numchans;c++)
{
/* Read the nibble (first is in the upper bits). */
al::byte nibble;
if(!(num++ & 1))
nibble = *src >> 4;
else
nibble = *(src++) & 0x0f;
ALint pred{(samples[c][0]*MSADPCMAdaptionCoeff[blockpred[c]][0] +
samples[c][1]*MSADPCMAdaptionCoeff[blockpred[c]][1]) / 256};
pred += (al::to_integer<int>(nibble^0x08) - 0x08) * delta[c];
pred = clampi(pred, -32768, 32767);
samples[c][1] = samples[c][0];
samples[c][0] = pred;
delta[c] = (MSADPCMAdaption[al::to_integer<ALubyte>(nibble)] * delta[c]) / 256;
delta[c] = maxi(16, delta[c]);
*(dst++) = pred;
}
}
}
void Convert_ALshort_ALima4(ALshort *dst, const al::byte *src, ALsizei numchans, ALsizei len,
ALsizei align)
{
const ALsizei byte_align{((align-1)/2 + 4) * numchans};
len /= align;
while(len--)
{
DecodeIMA4Block(dst, src, numchans, align);
src += byte_align;
dst += align*numchans;
}
}
void Convert_ALshort_ALmsadpcm(ALshort *dst, const al::byte *src, ALsizei numchans, ALsizei len,
ALsizei align)
{
const ALsizei byte_align{((align-2)/2 + 7) * numchans};
len /= align;
while(len--)
{
DecodeMSADPCMBlock(dst, src, numchans, align);
src += byte_align;
dst += align*numchans;
}
}
constexpr ALbitfieldSOFT INVALID_STORAGE_MASK{~unsigned(AL_MAP_READ_BIT_SOFT |
AL_MAP_WRITE_BIT_SOFT | AL_MAP_PERSISTENT_BIT_SOFT | AL_PRESERVE_DATA_BIT_SOFT)};
constexpr ALbitfieldSOFT MAP_READ_WRITE_FLAGS{AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT};
constexpr ALbitfieldSOFT INVALID_MAP_FLAGS{~unsigned(AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT |
AL_MAP_PERSISTENT_BIT_SOFT)};
ALbuffer *AllocBuffer(ALCcontext *context)
{
ALCdevice *device{context->mDevice};
std::lock_guard<std::mutex> _{device->BufferLock};
auto sublist = std::find_if(device->BufferList.begin(), device->BufferList.end(),
[](const BufferSubList &entry) noexcept -> bool
{ return entry.FreeMask != 0; }
);
auto lidx = static_cast<ALsizei>(std::distance(device->BufferList.begin(), sublist));
ALbuffer *buffer{nullptr};
ALsizei slidx{0};
if(LIKELY(sublist != device->BufferList.end()))
{
slidx = CTZ64(sublist->FreeMask);
buffer = sublist->Buffers + slidx;
}
else
{
/* Don't allocate so many list entries that the 32-bit ID could
* overflow...
*/
if(UNLIKELY(device->BufferList.size() >= 1<<25))
{
alSetError(context, AL_OUT_OF_MEMORY, "Too many buffers allocated");
return nullptr;
}
device->BufferList.emplace_back();
sublist = device->BufferList.end() - 1;
sublist->FreeMask = ~0_u64;
sublist->Buffers = reinterpret_cast<ALbuffer*>(al_calloc(16, sizeof(ALbuffer)*64));
if(UNLIKELY(!sublist->Buffers))
{
device->BufferList.pop_back();
alSetError(context, AL_OUT_OF_MEMORY, "Failed to allocate buffer batch");
return nullptr;
}
slidx = 0;
buffer = sublist->Buffers + slidx;
}
buffer = new (buffer) ALbuffer{};
/* Add 1 to avoid buffer ID 0. */
buffer->id = ((lidx<<6) | slidx) + 1;
sublist->FreeMask &= ~(1_u64 << slidx);
return buffer;
}
void FreeBuffer(ALCdevice *device, ALbuffer *buffer)
{
ALuint id{buffer->id - 1};
ALsizei lidx = id >> 6;
ALsizei slidx = id & 0x3f;
al::destroy_at(buffer);
device->BufferList[lidx].FreeMask |= 1_u64 << slidx;
}
inline ALbuffer *LookupBuffer(ALCdevice *device, ALuint id)
{
ALuint lidx = (id-1) >> 6;
ALsizei slidx = (id-1) & 0x3f;
if(UNLIKELY(lidx >= device->BufferList.size()))
return nullptr;
BufferSubList &sublist = device->BufferList[lidx];
if(UNLIKELY(sublist.FreeMask & (1_u64 << slidx)))
return nullptr;
return sublist.Buffers + slidx;
}
ALsizei SanitizeAlignment(UserFmtType type, ALsizei align)
{
if(align < 0)
return 0;
if(align == 0)
{
if(type == UserFmtIMA4)
{
/* Here is where things vary:
* nVidia and Apple use 64+1 sample frames per block -> block_size=36 bytes per channel
* Most PC sound software uses 2040+1 sample frames per block -> block_size=1024 bytes per channel
*/
return 65;
}
if(type == UserFmtMSADPCM)
return 64;
return 1;
}
if(type == UserFmtIMA4)
{
/* IMA4 block alignment must be a multiple of 8, plus 1. */
if((align&7) == 1) return align;
return 0;
}
if(type == UserFmtMSADPCM)
{
/* MSADPCM block alignment must be a multiple of 2. */
if((align&1) == 0) return align;
return 0;
}
return align;
}
const ALchar *NameFromUserFmtType(UserFmtType type)
{
switch(type)
{
case UserFmtUByte: return "Unsigned Byte";
case UserFmtShort: return "Signed Short";
case UserFmtFloat: return "Float32";
case UserFmtDouble: return "Float64";
case UserFmtMulaw: return "muLaw";
case UserFmtAlaw: return "aLaw";
case UserFmtIMA4: return "IMA4 ADPCM";
case UserFmtMSADPCM: return "MSADPCM";
}
return "<internal type error>";
}
/*
* LoadData
*
* Loads the specified data into the buffer, using the specified format.
*/
void LoadData(ALCcontext *context, ALbuffer *ALBuf, ALuint freq, ALsizei size, UserFmtChannels SrcChannels, UserFmtType SrcType, const al::byte *SrcData, ALbitfieldSOFT access)
{
if(UNLIKELY(ReadRef(&ALBuf->ref) != 0 || ALBuf->MappedAccess != 0))
SETERR_RETURN(context, AL_INVALID_OPERATION,, "Modifying storage for in-use buffer %u",
ALBuf->id);
/* Currently no channel configurations need to be converted. */
FmtChannels DstChannels{FmtMono};
switch(SrcChannels)
{
case UserFmtMono: DstChannels = FmtMono; break;
case UserFmtStereo: DstChannels = FmtStereo; break;
case UserFmtRear: DstChannels = FmtRear; break;
case UserFmtQuad: DstChannels = FmtQuad; break;
case UserFmtX51: DstChannels = FmtX51; break;
case UserFmtX61: DstChannels = FmtX61; break;
case UserFmtX71: DstChannels = FmtX71; break;
case UserFmtBFormat2D: DstChannels = FmtBFormat2D; break;
case UserFmtBFormat3D: DstChannels = FmtBFormat3D; break;
}
if (UNLIKELY(static_cast<long>(SrcChannels) !=
static_cast<long>(DstChannels)))
SETERR_RETURN(context, AL_INVALID_ENUM, , "Invalid format");
/* IMA4 and MSADPCM convert to 16-bit short. */
FmtType DstType{FmtUByte};
switch(SrcType)
{
case UserFmtUByte: DstType = FmtUByte; break;
case UserFmtShort: DstType = FmtShort; break;
case UserFmtFloat: DstType = FmtFloat; break;
case UserFmtDouble: DstType = FmtDouble; break;
case UserFmtAlaw: DstType = FmtAlaw; break;
case UserFmtMulaw: DstType = FmtMulaw; break;
case UserFmtIMA4: DstType = FmtShort; break;
case UserFmtMSADPCM: DstType = FmtShort; break;
}
/* TODO: Currently we can only map samples when they're not converted. To
* allow it would need some kind of double-buffering to hold onto a copy of
* the original data.
*/
if((access&MAP_READ_WRITE_FLAGS))
{
if (UNLIKELY(static_cast<long>(SrcType) != static_cast<long>(DstType)))
SETERR_RETURN(context, AL_INVALID_VALUE, ,
"%s samples cannot be mapped",
NameFromUserFmtType(SrcType));
}
const ALsizei unpackalign{ALBuf->UnpackAlign.load()};
const ALsizei align{SanitizeAlignment(SrcType, unpackalign)};
if(UNLIKELY(align < 1))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid unpack alignment %d for %s samples",
unpackalign, NameFromUserFmtType(SrcType));
if((access&AL_PRESERVE_DATA_BIT_SOFT))
{
/* Can only preserve data with the same format and alignment. */
if(UNLIKELY(ALBuf->mFmtChannels != DstChannels || ALBuf->OriginalType != SrcType))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Preserving data of mismatched format");
if(UNLIKELY(ALBuf->OriginalAlign != align))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Preserving data of mismatched alignment");
}
/* Convert the input/source size in bytes to sample frames using the unpack
* block alignment.
*/
const ALsizei SrcByteAlign{
(SrcType == UserFmtIMA4) ? ((align-1)/2 + 4) * ChannelsFromUserFmt(SrcChannels) :
(SrcType == UserFmtMSADPCM) ? ((align-2)/2 + 7) * ChannelsFromUserFmt(SrcChannels) :
(align * FrameSizeFromUserFmt(SrcChannels, SrcType))
};
if(UNLIKELY((size%SrcByteAlign) != 0))
SETERR_RETURN(context, AL_INVALID_VALUE,,
"Data size %d is not a multiple of frame size %d (%d unpack alignment)",
size, SrcByteAlign, align);
if(UNLIKELY(size/SrcByteAlign > std::numeric_limits<ALsizei>::max()/align))
SETERR_RETURN(context, AL_OUT_OF_MEMORY,,
"Buffer size overflow, %d blocks x %d samples per block", size/SrcByteAlign, align);
const ALsizei frames{size / SrcByteAlign * align};
/* Convert the sample frames to the number of bytes needed for internal
* storage.
*/
ALsizei NumChannels{ChannelsFromFmt(DstChannels)};
ALsizei FrameSize{NumChannels * BytesFromFmt(DstType)};
if(UNLIKELY(frames > std::numeric_limits<ALsizei>::max()/FrameSize))
SETERR_RETURN(context, AL_OUT_OF_MEMORY,,
"Buffer size overflow, %d frames x %d bytes per frame", frames, FrameSize);
size_t newsize{static_cast<size_t>(frames) * FrameSize};
/* Round up to the next 16-byte multiple. This could reallocate only when
* increasing or the new size is less than half the current, but then the
* buffer's AL_SIZE would not be very reliable for accounting buffer memory
* usage, and reporting the real size could cause problems for apps that
* use AL_SIZE to try to get the buffer's play length.
*/
newsize = RoundUp(newsize, 16);
if(newsize != ALBuf->mData.size())
{
auto newdata = al::vector<al::byte,16>(newsize, al::byte{});
if((access&AL_PRESERVE_DATA_BIT_SOFT))
{
const size_t tocopy{minz(newdata.size(), ALBuf->mData.size())};
std::copy_n(ALBuf->mData.begin(), tocopy, newdata.begin());
}
ALBuf->mData = std::move(newdata);
}
if(SrcType == UserFmtIMA4)
{
assert(DstType == FmtShort);
if(SrcData != nullptr && !ALBuf->mData.empty())
Convert_ALshort_ALima4(reinterpret_cast<ALshort*>(ALBuf->mData.data()),
SrcData, NumChannels, frames, align);
ALBuf->OriginalAlign = align;
}
else if(SrcType == UserFmtMSADPCM)
{
assert(DstType == FmtShort);
if(SrcData != nullptr && !ALBuf->mData.empty())
Convert_ALshort_ALmsadpcm(reinterpret_cast<ALshort*>(ALBuf->mData.data()),
SrcData, NumChannels, frames, align);
ALBuf->OriginalAlign = align;
}
else
{
assert(static_cast<long>(SrcType) == static_cast<long>(DstType));
if(SrcData != nullptr && !ALBuf->mData.empty())
std::copy_n(SrcData, frames*FrameSize, ALBuf->mData.begin());
ALBuf->OriginalAlign = 1;
}
ALBuf->OriginalSize = size;
ALBuf->OriginalType = SrcType;
ALBuf->Frequency = freq;
ALBuf->mFmtChannels = DstChannels;
ALBuf->mFmtType = DstType;
ALBuf->Access = access;
ALBuf->SampleLen = frames;
ALBuf->LoopStart = 0;
ALBuf->LoopEnd = ALBuf->SampleLen;
}
struct DecompResult { UserFmtChannels channels; UserFmtType type; };
al::optional<DecompResult> DecomposeUserFormat(ALenum format)
{
struct FormatMap {
ALenum format;
UserFmtChannels channels;
UserFmtType type;
};
static constexpr std::array<FormatMap,46> UserFmtList{{
{ AL_FORMAT_MONO8, UserFmtMono, UserFmtUByte },
{ AL_FORMAT_MONO16, UserFmtMono, UserFmtShort },
{ AL_FORMAT_MONO_FLOAT32, UserFmtMono, UserFmtFloat },
{ AL_FORMAT_MONO_DOUBLE_EXT, UserFmtMono, UserFmtDouble },
{ AL_FORMAT_MONO_IMA4, UserFmtMono, UserFmtIMA4 },
{ AL_FORMAT_MONO_MSADPCM_SOFT, UserFmtMono, UserFmtMSADPCM },
{ AL_FORMAT_MONO_MULAW, UserFmtMono, UserFmtMulaw },
{ AL_FORMAT_MONO_ALAW_EXT, UserFmtMono, UserFmtAlaw },
{ AL_FORMAT_STEREO8, UserFmtStereo, UserFmtUByte },
{ AL_FORMAT_STEREO16, UserFmtStereo, UserFmtShort },
{ AL_FORMAT_STEREO_FLOAT32, UserFmtStereo, UserFmtFloat },
{ AL_FORMAT_STEREO_DOUBLE_EXT, UserFmtStereo, UserFmtDouble },
{ AL_FORMAT_STEREO_IMA4, UserFmtStereo, UserFmtIMA4 },
{ AL_FORMAT_STEREO_MSADPCM_SOFT, UserFmtStereo, UserFmtMSADPCM },
{ AL_FORMAT_STEREO_MULAW, UserFmtStereo, UserFmtMulaw },
{ AL_FORMAT_STEREO_ALAW_EXT, UserFmtStereo, UserFmtAlaw },
{ AL_FORMAT_REAR8, UserFmtRear, UserFmtUByte },
{ AL_FORMAT_REAR16, UserFmtRear, UserFmtShort },
{ AL_FORMAT_REAR32, UserFmtRear, UserFmtFloat },
{ AL_FORMAT_REAR_MULAW, UserFmtRear, UserFmtMulaw },
{ AL_FORMAT_QUAD8_LOKI, UserFmtQuad, UserFmtUByte },
{ AL_FORMAT_QUAD16_LOKI, UserFmtQuad, UserFmtShort },
{ AL_FORMAT_QUAD8, UserFmtQuad, UserFmtUByte },
{ AL_FORMAT_QUAD16, UserFmtQuad, UserFmtShort },
{ AL_FORMAT_QUAD32, UserFmtQuad, UserFmtFloat },
{ AL_FORMAT_QUAD_MULAW, UserFmtQuad, UserFmtMulaw },
{ AL_FORMAT_51CHN8, UserFmtX51, UserFmtUByte },
{ AL_FORMAT_51CHN16, UserFmtX51, UserFmtShort },
{ AL_FORMAT_51CHN32, UserFmtX51, UserFmtFloat },
{ AL_FORMAT_51CHN_MULAW, UserFmtX51, UserFmtMulaw },
{ AL_FORMAT_61CHN8, UserFmtX61, UserFmtUByte },
{ AL_FORMAT_61CHN16, UserFmtX61, UserFmtShort },
{ AL_FORMAT_61CHN32, UserFmtX61, UserFmtFloat },
{ AL_FORMAT_61CHN_MULAW, UserFmtX61, UserFmtMulaw },
{ AL_FORMAT_71CHN8, UserFmtX71, UserFmtUByte },
{ AL_FORMAT_71CHN16, UserFmtX71, UserFmtShort },
{ AL_FORMAT_71CHN32, UserFmtX71, UserFmtFloat },
{ AL_FORMAT_71CHN_MULAW, UserFmtX71, UserFmtMulaw },
{ AL_FORMAT_BFORMAT2D_8, UserFmtBFormat2D, UserFmtUByte },
{ AL_FORMAT_BFORMAT2D_16, UserFmtBFormat2D, UserFmtShort },
{ AL_FORMAT_BFORMAT2D_FLOAT32, UserFmtBFormat2D, UserFmtFloat },
{ AL_FORMAT_BFORMAT2D_MULAW, UserFmtBFormat2D, UserFmtMulaw },
{ AL_FORMAT_BFORMAT3D_8, UserFmtBFormat3D, UserFmtUByte },
{ AL_FORMAT_BFORMAT3D_16, UserFmtBFormat3D, UserFmtShort },
{ AL_FORMAT_BFORMAT3D_FLOAT32, UserFmtBFormat3D, UserFmtFloat },
{ AL_FORMAT_BFORMAT3D_MULAW, UserFmtBFormat3D, UserFmtMulaw },
}};
for(const auto &fmt : UserFmtList)
{
if(fmt.format == format)
return al::make_optional(DecompResult{fmt.channels, fmt.type});
}
return al::nullopt;
}
} // namespace
AL_API ALvoid AL_APIENTRY alGenBuffers(ALsizei n, ALuint *buffers)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
if(UNLIKELY(n < 0))
{
alSetError(context.get(), AL_INVALID_VALUE, "Generating %d buffers", n);
return;
}
if(LIKELY(n == 1))
{
/* Special handling for the easy and normal case. */
ALbuffer *buffer = AllocBuffer(context.get());
if(buffer) buffers[0] = buffer->id;
}
else if(n > 1)
{
/* Store the allocated buffer IDs in a separate local list, to avoid
* modifying the user storage in case of failure.
*/
al::vector<ALuint> ids;
ids.reserve(n);
do {
ALbuffer *buffer = AllocBuffer(context.get());
if(!buffer)
{
alDeleteBuffers(static_cast<ALsizei>(ids.size()), ids.data());
return;
}
ids.emplace_back(buffer->id);
} while(--n);
std::copy(ids.begin(), ids.end(), buffers);
}
}
END_API_FUNC
AL_API ALvoid AL_APIENTRY alDeleteBuffers(ALsizei n, const ALuint *buffers)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
if(UNLIKELY(n < 0))
{
alSetError(context.get(), AL_INVALID_VALUE, "Deleting %d buffers", n);
return;
}
if(UNLIKELY(n == 0))
return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
/* First try to find any buffers that are invalid or in-use. */
const ALuint *buffers_end = buffers + n;
auto invbuf = std::find_if(buffers, buffers_end,
[device, &context](ALuint bid) -> bool
{
if(!bid) return false;
ALbuffer *ALBuf = LookupBuffer(device, bid);
if(UNLIKELY(!ALBuf))
{
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", bid);
return true;
}
if(UNLIKELY(ReadRef(&ALBuf->ref) != 0))
{
alSetError(context.get(), AL_INVALID_OPERATION, "Deleting in-use buffer %u", bid);
return true;
}
return false;
}
);
if(LIKELY(invbuf == buffers_end))
{
/* All good. Delete non-0 buffer IDs. */
std::for_each(buffers, buffers_end,
[device](ALuint bid) -> void
{
ALbuffer *buffer{bid ? LookupBuffer(device, bid) : nullptr};
if(buffer) FreeBuffer(device, buffer);
}
);
}
}
END_API_FUNC
AL_API ALboolean AL_APIENTRY alIsBuffer(ALuint buffer)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(LIKELY(context))
{
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(!buffer || LookupBuffer(device, buffer))
return AL_TRUE;
}
return AL_FALSE;
}
END_API_FUNC
AL_API ALvoid AL_APIENTRY alBufferData(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq)
START_API_FUNC
{ alBufferStorageSOFT(buffer, format, data, size, freq, 0); }
END_API_FUNC
AL_API void AL_APIENTRY alBufferStorageSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq, ALbitfieldSOFT flags)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(size < 0))
alSetError(context.get(), AL_INVALID_VALUE, "Negative storage size %d", size);
else if(UNLIKELY(freq < 1))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid sample rate %d", freq);
else if(UNLIKELY((flags&INVALID_STORAGE_MASK) != 0))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid storage flags 0x%x",
flags&INVALID_STORAGE_MASK);
else if(UNLIKELY((flags&AL_MAP_PERSISTENT_BIT_SOFT) && !(flags&MAP_READ_WRITE_FLAGS)))
alSetError(context.get(), AL_INVALID_VALUE,
"Declaring persistently mapped storage without read or write access");
else
{
auto usrfmt = DecomposeUserFormat(format);
if(UNLIKELY(!usrfmt))
alSetError(context.get(), AL_INVALID_ENUM, "Invalid format 0x%04x", format);
else
LoadData(context.get(), albuf, freq, size, usrfmt->channels, usrfmt->type,
static_cast<const al::byte*>(data), flags);
}
}
END_API_FUNC
AL_API void* AL_APIENTRY alMapBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length, ALbitfieldSOFT access)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return nullptr;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY((access&INVALID_MAP_FLAGS) != 0))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid map flags 0x%x", access&INVALID_MAP_FLAGS);
else if(UNLIKELY(!(access&MAP_READ_WRITE_FLAGS)))
alSetError(context.get(), AL_INVALID_VALUE, "Mapping buffer %u without read or write access",
buffer);
else
{
ALbitfieldSOFT unavailable = (albuf->Access^access) & access;
if(UNLIKELY(ReadRef(&albuf->ref) != 0 && !(access&AL_MAP_PERSISTENT_BIT_SOFT)))
alSetError(context.get(), AL_INVALID_OPERATION,
"Mapping in-use buffer %u without persistent mapping", buffer);
else if(UNLIKELY(albuf->MappedAccess != 0))
alSetError(context.get(), AL_INVALID_OPERATION, "Mapping already-mapped buffer %u", buffer);
else if(UNLIKELY((unavailable&AL_MAP_READ_BIT_SOFT)))
alSetError(context.get(), AL_INVALID_VALUE,
"Mapping buffer %u for reading without read access", buffer);
else if(UNLIKELY((unavailable&AL_MAP_WRITE_BIT_SOFT)))
alSetError(context.get(), AL_INVALID_VALUE,
"Mapping buffer %u for writing without write access", buffer);
else if(UNLIKELY((unavailable&AL_MAP_PERSISTENT_BIT_SOFT)))
alSetError(context.get(), AL_INVALID_VALUE,
"Mapping buffer %u persistently without persistent access", buffer);
else if(UNLIKELY(offset < 0 || offset >= albuf->OriginalSize ||
length <= 0 || length > albuf->OriginalSize - offset))
alSetError(context.get(), AL_INVALID_VALUE, "Mapping invalid range %d+%d for buffer %u",
offset, length, buffer);
else
{
void *retval = albuf->mData.data() + offset;
albuf->MappedAccess = access;
albuf->MappedOffset = offset;
albuf->MappedSize = length;
return retval;
}
}
return nullptr;
}
END_API_FUNC
AL_API void AL_APIENTRY alUnmapBufferSOFT(ALuint buffer)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(albuf->MappedAccess == 0)
alSetError(context.get(), AL_INVALID_OPERATION, "Unmapping unmapped buffer %u", buffer);
else
{
albuf->MappedAccess = 0;
albuf->MappedOffset = 0;
albuf->MappedSize = 0;
}
}
END_API_FUNC
AL_API void AL_APIENTRY alFlushMappedBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!(albuf->MappedAccess&AL_MAP_WRITE_BIT_SOFT)))
alSetError(context.get(), AL_INVALID_OPERATION,
"Flushing buffer %u while not mapped for writing", buffer);
else if(UNLIKELY(offset < albuf->MappedOffset ||
offset >= albuf->MappedOffset+albuf->MappedSize ||
length <= 0 || length > albuf->MappedOffset+albuf->MappedSize-offset))
alSetError(context.get(), AL_INVALID_VALUE, "Flushing invalid range %d+%d on buffer %u",
offset, length, buffer);
else
{
/* FIXME: Need to use some method of double-buffering for the mixer and
* app to hold separate memory, which can be safely transfered
* asynchronously. Currently we just say the app shouldn't write where
* OpenAL's reading, and hope for the best...
*/
std::atomic_thread_fence(std::memory_order_seq_cst);
}
}
END_API_FUNC
AL_API ALvoid AL_APIENTRY alBufferSubDataSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei offset, ALsizei length)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
{
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
return;
}
auto usrfmt = DecomposeUserFormat(format);
if(UNLIKELY(!usrfmt))
{
alSetError(context.get(), AL_INVALID_ENUM, "Invalid format 0x%04x", format);
return;
}
ALsizei unpack_align{albuf->UnpackAlign.load()};
ALsizei align{SanitizeAlignment(usrfmt->type, unpack_align)};
if(UNLIKELY(align < 1))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid unpack alignment %d", unpack_align);
else if(UNLIKELY(long{usrfmt->channels} != long{albuf->mFmtChannels} ||
usrfmt->type != albuf->OriginalType))
alSetError(context.get(), AL_INVALID_ENUM,
"Unpacking data with mismatched format");
else if(UNLIKELY(align != albuf->OriginalAlign))
alSetError(context.get(), AL_INVALID_VALUE,
"Unpacking data with alignment %u does not match original alignment %u",
align, albuf->OriginalAlign);
else if(UNLIKELY(albuf->MappedAccess != 0))
alSetError(context.get(), AL_INVALID_OPERATION, "Unpacking data into mapped buffer %u",
buffer);
else
{
ALsizei num_chans{ChannelsFromFmt(albuf->mFmtChannels)};
ALsizei frame_size{num_chans * BytesFromFmt(albuf->mFmtType)};
ALsizei byte_align{
(albuf->OriginalType == UserFmtIMA4) ? ((align-1)/2 + 4) * num_chans :
(albuf->OriginalType == UserFmtMSADPCM) ? ((align-2)/2 + 7) * num_chans :
(align * frame_size)
};
if(UNLIKELY(offset < 0 || length < 0 || offset > albuf->OriginalSize ||
length > albuf->OriginalSize-offset))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid data sub-range %d+%d on buffer %u",
offset, length, buffer);
else if(UNLIKELY((offset%byte_align) != 0))
alSetError(context.get(), AL_INVALID_VALUE,
"Sub-range offset %d is not a multiple of frame size %d (%d unpack alignment)",
offset, byte_align, align);
else if(UNLIKELY((length%byte_align) != 0))
alSetError(context.get(), AL_INVALID_VALUE,
"Sub-range length %d is not a multiple of frame size %d (%d unpack alignment)",
length, byte_align, align);
else
{
/* offset -> byte offset, length -> sample count */
offset = offset/byte_align * align * frame_size;
length = length/byte_align * align;
void *dst = albuf->mData.data() + offset;
if(usrfmt->type == UserFmtIMA4 && albuf->mFmtType == FmtShort)
Convert_ALshort_ALima4(static_cast<ALshort*>(dst),
static_cast<const al::byte*>(data), num_chans, length, align);
else if(usrfmt->type == UserFmtMSADPCM && albuf->mFmtType == FmtShort)
Convert_ALshort_ALmsadpcm(static_cast<ALshort*>(dst),
static_cast<const al::byte*>(data), num_chans, length, align);
else
{
assert(long{usrfmt->type} == static_cast<long>(albuf->mFmtType));
memcpy(dst, data, length * frame_size);
}
}
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferSamplesSOFT(ALuint /*buffer*/, ALuint /*samplerate*/,
ALenum /*internalformat*/, ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/,
const ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
alSetError(context.get(), AL_INVALID_OPERATION, "alBufferSamplesSOFT not supported");
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferSubSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/,
ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, const ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
alSetError(context.get(), AL_INVALID_OPERATION, "alBufferSubSamplesSOFT not supported");
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/,
ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
alSetError(context.get(), AL_INVALID_OPERATION, "alGetBufferSamplesSOFT not supported");
}
END_API_FUNC
AL_API ALboolean AL_APIENTRY alIsBufferFormatSupportedSOFT(ALenum /*format*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(!context) return AL_FALSE;
alSetError(context.get(), AL_INVALID_OPERATION, "alIsBufferFormatSupportedSOFT not supported");
return AL_FALSE;
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferf(ALuint buffer, ALenum param, ALfloat /*value*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBuffer3f(ALuint buffer, ALenum param,
ALfloat /*value1*/, ALfloat /*value2*/, ALfloat /*value3*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferfv(ALuint buffer, ALenum param, const ALfloat *values)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!values))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferi(ALuint buffer, ALenum param, ALint value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
if(UNLIKELY(value < 0))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid unpack block alignment %d", value);
else
albuf->UnpackAlign.store(value);
break;
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
if(UNLIKELY(value < 0))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid pack block alignment %d", value);
else
albuf->PackAlign.store(value);
break;
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBuffer3i(ALuint buffer, ALenum param,
ALint /*value1*/, ALint /*value2*/, ALint /*value3*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferiv(ALuint buffer, ALenum param, const ALint *values)
START_API_FUNC
{
if(values)
{
switch(param)
{
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
alBufferi(buffer, param, values[0]);
return;
}
}
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!values))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_LOOP_POINTS_SOFT:
if(UNLIKELY(ReadRef(&albuf->ref) != 0))
alSetError(context.get(), AL_INVALID_OPERATION, "Modifying in-use buffer %u's loop points",
buffer);
else if(UNLIKELY(values[0] >= values[1] || values[0] < 0 || values[1] > albuf->SampleLen))
alSetError(context.get(), AL_INVALID_VALUE, "Invalid loop point range %d -> %d o buffer %u",
values[0], values[1], buffer);
else
{
albuf->LoopStart = values[0];
albuf->LoopEnd = values[1];
}
break;
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x",
param);
}
}
END_API_FUNC
AL_API ALvoid AL_APIENTRY alGetBufferf(ALuint buffer, ALenum param, ALfloat *value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!value))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBuffer3f(ALuint buffer, ALenum param, ALfloat *value1, ALfloat *value2, ALfloat *value3)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!value1 || !value2 || !value3))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferfv(ALuint buffer, ALenum param, ALfloat *values)
START_API_FUNC
{
switch(param)
{
case AL_SEC_LENGTH_SOFT:
alGetBufferf(buffer, param, values);
return;
}
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!values))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API ALvoid AL_APIENTRY alGetBufferi(ALuint buffer, ALenum param, ALint *value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!value))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_FREQUENCY:
*value = albuf->Frequency;
break;
case AL_BITS:
*value = BytesFromFmt(albuf->mFmtType) * 8;
break;
case AL_CHANNELS:
*value = ChannelsFromFmt(albuf->mFmtChannels);
break;
case AL_SIZE:
*value = albuf->SampleLen * FrameSizeFromFmt(albuf->mFmtChannels, albuf->mFmtType);
break;
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
*value = albuf->UnpackAlign.load();
break;
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
*value = albuf->PackAlign.load();
break;
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBuffer3i(ALuint buffer, ALenum param, ALint *value1, ALint *value2, ALint *value3)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
if(UNLIKELY(LookupBuffer(device, buffer) == nullptr))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!value1 || !value2 || !value3))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferiv(ALuint buffer, ALenum param, ALint *values)
START_API_FUNC
{
switch(param)
{
case AL_FREQUENCY:
case AL_BITS:
case AL_CHANNELS:
case AL_SIZE:
case AL_INTERNAL_FORMAT_SOFT:
case AL_BYTE_LENGTH_SOFT:
case AL_SAMPLE_LENGTH_SOFT:
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
alGetBufferi(buffer, param, values);
return;
}
ContextRef context{GetContextRef()};
if(UNLIKELY(!context)) return;
ALCdevice *device = context->mDevice;
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if(UNLIKELY(!albuf))
alSetError(context.get(), AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if(UNLIKELY(!values))
alSetError(context.get(), AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_LOOP_POINTS_SOFT:
values[0] = albuf->LoopStart;
values[1] = albuf->LoopEnd;
break;
default:
alSetError(context.get(), AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x",
param);
}
}
END_API_FUNC
ALsizei BytesFromUserFmt(UserFmtType type)
{
switch(type)
{
case UserFmtUByte: return sizeof(ALubyte);
case UserFmtShort: return sizeof(ALshort);
case UserFmtFloat: return sizeof(ALfloat);
case UserFmtDouble: return sizeof(ALdouble);
case UserFmtMulaw: return sizeof(ALubyte);
case UserFmtAlaw: return sizeof(ALubyte);
case UserFmtIMA4: break; /* not handled here */
case UserFmtMSADPCM: break; /* not handled here */
}
return 0;
}
ALsizei ChannelsFromUserFmt(UserFmtChannels chans)
{
switch(chans)
{
case UserFmtMono: return 1;
case UserFmtStereo: return 2;
case UserFmtRear: return 2;
case UserFmtQuad: return 4;
case UserFmtX51: return 6;
case UserFmtX61: return 7;
case UserFmtX71: return 8;
case UserFmtBFormat2D: return 3;
case UserFmtBFormat3D: return 4;
}
return 0;
}
ALsizei BytesFromFmt(FmtType type)
{
switch(type)
{
case FmtUByte: return sizeof(ALubyte);
case FmtShort: return sizeof(ALshort);
case FmtFloat: return sizeof(ALfloat);
case FmtDouble: return sizeof(ALdouble);
case FmtMulaw: return sizeof(ALubyte);
case FmtAlaw: return sizeof(ALubyte);
}
return 0;
}
ALsizei ChannelsFromFmt(FmtChannels chans)
{
switch(chans)
{
case FmtMono: return 1;
case FmtStereo: return 2;
case FmtRear: return 2;
case FmtQuad: return 4;
case FmtX51: return 6;
case FmtX61: return 7;
case FmtX71: return 8;
case FmtBFormat2D: return 3;
case FmtBFormat3D: return 4;
}
return 0;
}
BufferSubList::~BufferSubList()
{
uint64_t usemask{~FreeMask};
while(usemask)
{
ALsizei idx{CTZ64(usemask)};
al::destroy_at(Buffers+idx);
usemask &= ~(1_u64 << idx);
}
FreeMask = ~usemask;
al_free(Buffers);
Buffers = nullptr;
}