openal-soft/core/bformatdec.cpp
2022-03-31 13:07:58 -07:00

193 lines
7.4 KiB
C++

#include "config.h"
#include "bformatdec.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <utility>
#include "almalloc.h"
#include "alnumbers.h"
#include "filters/splitter.h"
#include "front_stablizer.h"
#include "mixer.h"
#include "opthelpers.h"
BFormatDec::BFormatDec(const size_t inchans, const al::span<const ChannelDec> coeffs,
const al::span<const ChannelDec> coeffslf, const float xover_f0norm,
std::unique_ptr<FrontStablizer> stablizer)
: mStablizer{std::move(stablizer)}, mDualBand{!coeffslf.empty()}, mChannelDec{inchans}
{
if(!mDualBand)
{
for(size_t j{0};j < mChannelDec.size();++j)
{
float *outcoeffs{mChannelDec[j].mGains.Single};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
}
}
else
{
mChannelDec[0].mXOver.init(xover_f0norm);
for(size_t j{1};j < mChannelDec.size();++j)
mChannelDec[j].mXOver = mChannelDec[0].mXOver;
for(size_t j{0};j < mChannelDec.size();++j)
{
float *outcoeffs{mChannelDec[j].mGains.Dual[sHFBand]};
for(const ChannelDec &incoeffs : coeffs)
*(outcoeffs++) = incoeffs[j];
outcoeffs = mChannelDec[j].mGains.Dual[sLFBand];
for(const ChannelDec &incoeffs : coeffslf)
*(outcoeffs++) = incoeffs[j];
}
}
}
void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
if(mDualBand)
{
const al::span<float> hfSamples{mSamples[sHFBand].data(), SamplesToDo};
const al::span<float> lfSamples{mSamples[sLFBand].data(), SamplesToDo};
for(auto &chandec : mChannelDec)
{
chandec.mXOver.process({InSamples->data(), SamplesToDo}, hfSamples.data(),
lfSamples.data());
MixSamples(hfSamples, OutBuffer, chandec.mGains.Dual[sHFBand],
chandec.mGains.Dual[sHFBand], 0, 0);
MixSamples(lfSamples, OutBuffer, chandec.mGains.Dual[sLFBand],
chandec.mGains.Dual[sLFBand], 0, 0);
++InSamples;
}
}
else
{
for(auto &chandec : mChannelDec)
{
MixSamples({InSamples->data(), SamplesToDo}, OutBuffer, chandec.mGains.Single,
chandec.mGains.Single, 0, 0);
++InSamples;
}
}
}
void BFormatDec::processStablize(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t lidx, const size_t ridx, const size_t cidx,
const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
/* Move the existing direct L/R signal out so it doesn't get processed by
* the stablizer. Add a delay to it so it stays aligned with the stablizer
* delay.
*/
float *RESTRICT mid{al::assume_aligned<16>(mStablizer->MidDirect.data())};
float *RESTRICT side{al::assume_aligned<16>(mStablizer->Side.data())};
for(size_t i{0};i < SamplesToDo;++i)
{
mid[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] + OutBuffer[ridx][i];
side[FrontStablizer::DelayLength+i] = OutBuffer[lidx][i] - OutBuffer[ridx][i];
}
std::fill_n(OutBuffer[lidx].begin(), SamplesToDo, 0.0f);
std::fill_n(OutBuffer[ridx].begin(), SamplesToDo, 0.0f);
/* Decode the B-Format input to OutBuffer. */
process(OutBuffer, InSamples, SamplesToDo);
/* Apply a delay to all channels, except the front-left and front-right, so
* they maintain correct timing.
*/
const size_t NumChannels{OutBuffer.size()};
for(size_t i{0u};i < NumChannels;i++)
{
if(i == lidx || i == ridx)
continue;
auto &DelayBuf = mStablizer->DelayBuf[i];
auto buffer_end = OutBuffer[i].begin() + SamplesToDo;
if LIKELY(SamplesToDo >= FrontStablizer::DelayLength)
{
auto delay_end = std::rotate(OutBuffer[i].begin(),
buffer_end - FrontStablizer::DelayLength, buffer_end);
std::swap_ranges(OutBuffer[i].begin(), delay_end, DelayBuf.begin());
}
else
{
auto delay_start = std::swap_ranges(OutBuffer[i].begin(), buffer_end,
DelayBuf.begin());
std::rotate(DelayBuf.begin(), delay_start, DelayBuf.end());
}
}
/* Include the side signal for what was just decoded. */
for(size_t i{0};i < SamplesToDo;++i)
side[FrontStablizer::DelayLength+i] += OutBuffer[lidx][i] - OutBuffer[ridx][i];
/* Combine the delayed mid signal with the decoded mid signal. */
float *tmpbuf{mStablizer->TempBuf.data()};
auto tmpiter = std::copy(mStablizer->MidDelay.cbegin(), mStablizer->MidDelay.cend(), tmpbuf);
for(size_t i{0};i < SamplesToDo;++i,++tmpiter)
*tmpiter = OutBuffer[lidx][i] + OutBuffer[ridx][i];
/* Save the newest samples for next time. */
std::copy_n(tmpbuf+SamplesToDo, mStablizer->MidDelay.size(), mStablizer->MidDelay.begin());
/* Apply an all-pass on the signal in reverse. The future samples are
* included with the all-pass to reduce the error in the output samples
* (the smaller the delay, the more error is introduced).
*/
mStablizer->MidFilter.applyAllpassRev({tmpbuf, SamplesToDo+FrontStablizer::DelayLength});
/* Now apply the band-splitter, combining its phase shift with the reversed
* phase shift, restoring the original phase on the split signal.
*/
mStablizer->MidFilter.process({tmpbuf, SamplesToDo}, mStablizer->MidHF.data(),
mStablizer->MidLF.data());
/* This pans the separate low- and high-frequency signals between being on
* the center channel and the left+right channels. The low-frequency signal
* is panned 1/3rd toward center and the high-frequency signal is panned
* 1/4th toward center. These values can be tweaked.
*/
const float cos_lf{std::cos(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
const float cos_hf{std::cos(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
const float sin_lf{std::sin(1.0f/3.0f * (al::numbers::pi_v<float>*0.5f))};
const float sin_hf{std::sin(1.0f/4.0f * (al::numbers::pi_v<float>*0.5f))};
for(size_t i{0};i < SamplesToDo;i++)
{
const float m{mStablizer->MidLF[i]*cos_lf + mStablizer->MidHF[i]*cos_hf + mid[i]};
const float c{mStablizer->MidLF[i]*sin_lf + mStablizer->MidHF[i]*sin_hf};
const float s{side[i]};
/* The generated center channel signal adds to the existing signal,
* while the modified left and right channels replace.
*/
OutBuffer[lidx][i] = (m + s) * 0.5f;
OutBuffer[ridx][i] = (m - s) * 0.5f;
OutBuffer[cidx][i] += c * 0.5f;
}
/* Move the delayed mid/side samples to the front for next time. */
auto mid_end = mStablizer->MidDirect.cbegin() + SamplesToDo;
std::copy(mid_end, mid_end+FrontStablizer::DelayLength, mStablizer->MidDirect.begin());
auto side_end = mStablizer->Side.cbegin() + SamplesToDo;
std::copy(side_end, side_end+FrontStablizer::DelayLength, mStablizer->Side.begin());
}
std::unique_ptr<BFormatDec> BFormatDec::Create(const size_t inchans,
const al::span<const ChannelDec> coeffs, const al::span<const ChannelDec> coeffslf,
const float xover_f0norm, std::unique_ptr<FrontStablizer> stablizer)
{
return std::make_unique<BFormatDec>(inchans, coeffs, coeffslf, xover_f0norm,
std::move(stablizer));
}