1307 lines
44 KiB
C
1307 lines
44 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alSource.h"
|
|
#include "alBuffer.h"
|
|
#include "alListener.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bs2b.h"
|
|
#include "hrtf.h"
|
|
#include "static_assert.h"
|
|
|
|
#include "backends/base.h"
|
|
#include "midi/base.h"
|
|
|
|
|
|
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
|
|
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
|
|
|
|
struct ChanMap {
|
|
enum Channel channel;
|
|
ALfloat angle;
|
|
ALfloat elevation;
|
|
};
|
|
|
|
/* Cone scalar */
|
|
ALfloat ConeScale = 1.0f;
|
|
|
|
/* Localized Z scalar for mono sources */
|
|
ALfloat ZScale = 1.0f;
|
|
|
|
extern inline ALfloat minf(ALfloat a, ALfloat b);
|
|
extern inline ALfloat maxf(ALfloat a, ALfloat b);
|
|
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
|
|
|
|
extern inline ALdouble mind(ALdouble a, ALdouble b);
|
|
extern inline ALdouble maxd(ALdouble a, ALdouble b);
|
|
extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
|
|
|
|
extern inline ALuint minu(ALuint a, ALuint b);
|
|
extern inline ALuint maxu(ALuint a, ALuint b);
|
|
extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
|
|
|
|
extern inline ALint mini(ALint a, ALint b);
|
|
extern inline ALint maxi(ALint a, ALint b);
|
|
extern inline ALint clampi(ALint val, ALint min, ALint max);
|
|
|
|
extern inline ALint64 mini64(ALint64 a, ALint64 b);
|
|
extern inline ALint64 maxi64(ALint64 a, ALint64 b);
|
|
extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
|
|
|
|
extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
|
|
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
|
|
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
|
|
|
|
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
|
|
extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
|
|
|
|
|
|
static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
|
|
{
|
|
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
|
|
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
|
|
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
|
|
}
|
|
|
|
static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
|
|
{
|
|
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
|
|
inVector1[2]*inVector2[2];
|
|
}
|
|
|
|
static inline void aluNormalize(ALfloat *inVector)
|
|
{
|
|
ALfloat lengthsqr = aluDotproduct(inVector, inVector);
|
|
if(lengthsqr > 0.0f)
|
|
{
|
|
ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
|
|
inVector[0] *= inv_length;
|
|
inVector[1] *= inv_length;
|
|
inVector[2] *= inv_length;
|
|
}
|
|
}
|
|
|
|
static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
|
|
{
|
|
ALfloat temp[4] = {
|
|
vector[0], vector[1], vector[2], w
|
|
};
|
|
|
|
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
|
|
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
|
|
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
|
|
}
|
|
|
|
|
|
static void UpdateDryStepping(DirectParams *params, ALuint num_chans)
|
|
{
|
|
ALuint i, j;
|
|
|
|
if(!params->Moving)
|
|
{
|
|
for(i = 0;i < num_chans;i++)
|
|
{
|
|
MixGains *gains = params->Mix.Gains[i];
|
|
for(j = 0;j < MaxChannels;j++)
|
|
{
|
|
gains[j].Current = gains[j].Target;
|
|
gains[j].Step = 1.0f;
|
|
}
|
|
}
|
|
params->Moving = AL_TRUE;
|
|
params->Counter = 0;
|
|
return;
|
|
}
|
|
|
|
for(i = 0;i < num_chans;i++)
|
|
{
|
|
MixGains *gains = params->Mix.Gains[i];
|
|
for(j = 0;j < MaxChannels;j++)
|
|
{
|
|
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
|
|
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
|
|
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
|
|
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
|
|
else
|
|
gains[j].Step = 1.0f;
|
|
gains[j].Current = cur;
|
|
}
|
|
}
|
|
params->Counter = 64;
|
|
}
|
|
|
|
static void UpdateWetStepping(SendParams *params)
|
|
{
|
|
ALfloat cur, trg;
|
|
|
|
if(!params->Moving)
|
|
{
|
|
params->Gain.Current = params->Gain.Target;
|
|
params->Gain.Step = 1.0f;
|
|
|
|
params->Moving = AL_TRUE;
|
|
params->Counter = 0;
|
|
return;
|
|
}
|
|
|
|
cur = maxf(params->Gain.Current, FLT_EPSILON);
|
|
trg = maxf(params->Gain.Target, FLT_EPSILON);
|
|
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
|
|
params->Gain.Step = powf(trg/cur, 1.0f/64.0f);
|
|
else
|
|
params->Gain.Step = 1.0f;
|
|
params->Gain.Current = cur;
|
|
|
|
params->Counter = 64;
|
|
}
|
|
|
|
|
|
static ALvoid CalcListenerParams(ALlistener *Listener)
|
|
{
|
|
ALfloat N[3], V[3], U[3], P[3];
|
|
|
|
/* AT then UP */
|
|
N[0] = Listener->Forward[0];
|
|
N[1] = Listener->Forward[1];
|
|
N[2] = Listener->Forward[2];
|
|
aluNormalize(N);
|
|
V[0] = Listener->Up[0];
|
|
V[1] = Listener->Up[1];
|
|
V[2] = Listener->Up[2];
|
|
aluNormalize(V);
|
|
/* Build and normalize right-vector */
|
|
aluCrossproduct(N, V, U);
|
|
aluNormalize(U);
|
|
|
|
Listener->Params.Matrix[0][0] = U[0];
|
|
Listener->Params.Matrix[0][1] = V[0];
|
|
Listener->Params.Matrix[0][2] = -N[0];
|
|
Listener->Params.Matrix[0][3] = 0.0f;
|
|
Listener->Params.Matrix[1][0] = U[1];
|
|
Listener->Params.Matrix[1][1] = V[1];
|
|
Listener->Params.Matrix[1][2] = -N[1];
|
|
Listener->Params.Matrix[1][3] = 0.0f;
|
|
Listener->Params.Matrix[2][0] = U[2];
|
|
Listener->Params.Matrix[2][1] = V[2];
|
|
Listener->Params.Matrix[2][2] = -N[2];
|
|
Listener->Params.Matrix[2][3] = 0.0f;
|
|
Listener->Params.Matrix[3][0] = 0.0f;
|
|
Listener->Params.Matrix[3][1] = 0.0f;
|
|
Listener->Params.Matrix[3][2] = 0.0f;
|
|
Listener->Params.Matrix[3][3] = 1.0f;
|
|
|
|
P[0] = Listener->Position[0];
|
|
P[1] = Listener->Position[1];
|
|
P[2] = Listener->Position[2];
|
|
aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
|
|
Listener->Params.Matrix[3][0] = -P[0];
|
|
Listener->Params.Matrix[3][1] = -P[1];
|
|
Listener->Params.Matrix[3][2] = -P[2];
|
|
|
|
Listener->Params.Velocity[0] = Listener->Velocity[0];
|
|
Listener->Params.Velocity[1] = Listener->Velocity[1];
|
|
Listener->Params.Velocity[2] = Listener->Velocity[2];
|
|
aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
|
|
}
|
|
|
|
ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
|
|
{
|
|
static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f, 0.0f } };
|
|
static const struct ChanMap StereoMap[2] = {
|
|
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap StereoWideMap[2] = {
|
|
{ FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap RearMap[2] = {
|
|
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap QuadMap[4] = {
|
|
{ FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
|
|
{ BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap X51Map[6] = {
|
|
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap X61Map[7] = {
|
|
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
|
|
{ SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
|
|
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
|
|
};
|
|
static const struct ChanMap X71Map[8] = {
|
|
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
|
|
{ SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
|
|
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
|
|
};
|
|
|
|
ALCdevice *Device = ALContext->Device;
|
|
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
|
|
ALbufferlistitem *BufferListItem;
|
|
enum FmtChannels Channels;
|
|
ALfloat DryGain, DryGainHF, DryGainLF;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALfloat WetGainLF[MAX_SENDS];
|
|
ALuint NumSends, Frequency;
|
|
ALboolean Relative;
|
|
const struct ChanMap *chans = NULL;
|
|
ALuint num_channels = 0;
|
|
ALboolean DirectChannels;
|
|
ALboolean isbformat = AL_FALSE;
|
|
ALfloat Pitch;
|
|
ALuint i, j, c;
|
|
|
|
/* Get device properties */
|
|
NumSends = Device->NumAuxSends;
|
|
Frequency = Device->Frequency;
|
|
|
|
/* Get listener properties */
|
|
ListenerGain = ALContext->Listener->Gain;
|
|
|
|
/* Get source properties */
|
|
SourceVolume = ALSource->Gain;
|
|
MinVolume = ALSource->MinGain;
|
|
MaxVolume = ALSource->MaxGain;
|
|
Pitch = ALSource->Pitch;
|
|
Relative = ALSource->HeadRelative;
|
|
DirectChannels = ALSource->DirectChannels;
|
|
|
|
voice->Direct.OutBuffer = Device->DryBuffer;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALeffectslot *Slot = ALSource->Send[i].Slot;
|
|
if(!Slot && i == 0)
|
|
Slot = Device->DefaultSlot;
|
|
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
|
|
voice->Send[i].OutBuffer = NULL;
|
|
else
|
|
voice->Send[i].OutBuffer = Slot->WetBuffer;
|
|
}
|
|
|
|
/* Calculate the stepping value */
|
|
Channels = FmtMono;
|
|
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
|
|
while(BufferListItem != NULL)
|
|
{
|
|
ALbuffer *ALBuffer;
|
|
if((ALBuffer=BufferListItem->buffer) != NULL)
|
|
{
|
|
Pitch = Pitch * ALBuffer->Frequency / Frequency;
|
|
if(Pitch > (ALfloat)MAX_PITCH)
|
|
voice->Step = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
{
|
|
voice->Step = fastf2i(Pitch*FRACTIONONE);
|
|
if(voice->Step == 0)
|
|
voice->Step = 1;
|
|
}
|
|
|
|
Channels = ALBuffer->FmtChannels;
|
|
break;
|
|
}
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
|
|
/* Calculate gains */
|
|
DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
|
|
DryGain *= ALSource->Direct.Gain * ListenerGain;
|
|
DryGainHF = ALSource->Direct.GainHF;
|
|
DryGainLF = ALSource->Direct.GainLF;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
|
|
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
|
|
WetGainHF[i] = ALSource->Send[i].GainHF;
|
|
WetGainLF[i] = ALSource->Send[i].GainLF;
|
|
}
|
|
|
|
switch(Channels)
|
|
{
|
|
case FmtMono:
|
|
chans = MonoMap;
|
|
num_channels = 1;
|
|
break;
|
|
|
|
case FmtStereo:
|
|
/* HACK: Place the stereo channels at +/-90 degrees when using non-
|
|
* HRTF stereo output. This helps reduce the "monoization" caused
|
|
* by them panning towards the center. */
|
|
if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
|
|
chans = StereoWideMap;
|
|
else
|
|
chans = StereoMap;
|
|
num_channels = 2;
|
|
break;
|
|
|
|
case FmtRear:
|
|
chans = RearMap;
|
|
num_channels = 2;
|
|
break;
|
|
|
|
case FmtQuad:
|
|
chans = QuadMap;
|
|
num_channels = 4;
|
|
break;
|
|
|
|
case FmtX51:
|
|
chans = X51Map;
|
|
num_channels = 6;
|
|
break;
|
|
|
|
case FmtX61:
|
|
chans = X61Map;
|
|
num_channels = 7;
|
|
break;
|
|
|
|
case FmtX71:
|
|
chans = X71Map;
|
|
num_channels = 8;
|
|
break;
|
|
|
|
case FmtBFormat2D:
|
|
num_channels = 3;
|
|
isbformat = AL_TRUE;
|
|
DirectChannels = AL_FALSE;
|
|
break;
|
|
|
|
case FmtBFormat3D:
|
|
num_channels = 4;
|
|
isbformat = AL_TRUE;
|
|
DirectChannels = AL_FALSE;
|
|
break;
|
|
}
|
|
|
|
if(isbformat)
|
|
{
|
|
ALfloat N[3], V[3], U[3];
|
|
ALfloat matrix[4][4];
|
|
|
|
/* AT then UP */
|
|
N[0] = ALSource->Orientation[0][0];
|
|
N[1] = ALSource->Orientation[0][1];
|
|
N[2] = ALSource->Orientation[0][2];
|
|
aluNormalize(N);
|
|
V[0] = ALSource->Orientation[1][0];
|
|
V[1] = ALSource->Orientation[1][1];
|
|
V[2] = ALSource->Orientation[1][2];
|
|
aluNormalize(V);
|
|
if(!Relative)
|
|
{
|
|
ALfloat (*restrict lmatrix)[4] = ALContext->Listener->Params.Matrix;
|
|
aluMatrixVector(N, 0.0f, lmatrix);
|
|
aluMatrixVector(V, 0.0f, lmatrix);
|
|
}
|
|
/* Build and normalize right-vector */
|
|
aluCrossproduct(N, V, U);
|
|
aluNormalize(U);
|
|
|
|
matrix[0][0] = 1.0f;
|
|
matrix[0][1] = 0.0f;
|
|
matrix[0][2] = 0.0f;
|
|
matrix[0][3] = 0.0f;
|
|
matrix[1][0] = 0.0f;
|
|
matrix[1][1] = -N[2];
|
|
matrix[1][2] = -N[0];
|
|
matrix[1][3] = N[1];
|
|
matrix[2][0] = 0.0f;
|
|
matrix[2][1] = U[2];
|
|
matrix[2][2] = U[0];
|
|
matrix[2][3] = -U[1];
|
|
matrix[3][0] = 0.0f;
|
|
matrix[3][1] = -V[2];
|
|
matrix[3][2] = -V[0];
|
|
matrix[3][3] = V[1];
|
|
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
MixGains *gains = voice->Direct.Mix.Gains[c];
|
|
ALfloat Target[MaxChannels];
|
|
|
|
ComputeBFormatGains(Device, matrix[c], DryGain, Target);
|
|
for(i = 0;i < MaxChannels;i++)
|
|
gains[i].Target = Target[i];
|
|
}
|
|
/* B-Format cannot handle logarithmic gain stepping, since the gain can
|
|
* switch between positive and negative values. */
|
|
voice->Direct.Moving = AL_FALSE;
|
|
UpdateDryStepping(&voice->Direct, num_channels);
|
|
|
|
voice->IsHrtf = AL_FALSE;
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= 1.4142f;
|
|
}
|
|
else if(DirectChannels != AL_FALSE)
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
MixGains *gains = voice->Direct.Mix.Gains[c];
|
|
|
|
for(j = 0;j < MaxChannels;j++)
|
|
gains[j].Target = 0.0f;
|
|
if(GetChannelIdxByName(Device, chans[c].channel) != -1)
|
|
gains[chans[c].channel].Target = DryGain;
|
|
}
|
|
UpdateDryStepping(&voice->Direct, num_channels);
|
|
|
|
voice->IsHrtf = AL_FALSE;
|
|
}
|
|
else if(Device->Hrtf)
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
/* Skip LFE */
|
|
voice->Direct.Mix.Hrtf.Params[c].Delay[0] = 0;
|
|
voice->Direct.Mix.Hrtf.Params[c].Delay[1] = 0;
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
|
|
voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get the static HRIR coefficients and delays for this
|
|
* channel. */
|
|
GetLerpedHrtfCoeffs(Device->Hrtf,
|
|
chans[c].elevation, chans[c].angle, 1.0f, DryGain,
|
|
voice->Direct.Mix.Hrtf.Params[c].Coeffs,
|
|
voice->Direct.Mix.Hrtf.Params[c].Delay);
|
|
}
|
|
}
|
|
voice->Direct.Counter = 0;
|
|
voice->Direct.Moving = AL_TRUE;
|
|
voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
|
|
|
|
voice->IsHrtf = AL_TRUE;
|
|
}
|
|
else
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
MixGains *gains = voice->Direct.Mix.Gains[c];
|
|
ALfloat Target[MaxChannels];
|
|
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
for(i = 0;i < MaxChannels;i++)
|
|
gains[i].Target = 0.0f;
|
|
if(GetChannelIdxByName(Device, chans[c].channel) != -1)
|
|
gains[chans[c].channel].Target = DryGain;
|
|
continue;
|
|
}
|
|
|
|
ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
|
|
for(i = 0;i < MaxChannels;i++)
|
|
gains[i].Target = Target[i];
|
|
}
|
|
UpdateDryStepping(&voice->Direct, num_channels);
|
|
|
|
voice->IsHrtf = AL_FALSE;
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
voice->Send[i].Gain.Target = WetGain[i];
|
|
UpdateWetStepping(&voice->Send[i]);
|
|
}
|
|
|
|
{
|
|
ALfloat gainhf = maxf(0.01f, DryGainHF);
|
|
ALfloat gainlf = maxf(0.01f, DryGainLF);
|
|
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
|
|
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
voice->Direct.Filters[c].ActiveType = AF_None;
|
|
if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
|
|
if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
|
|
hfscale, 0.0f
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
|
|
lfscale, 0.0f
|
|
);
|
|
}
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
|
|
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
|
|
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
|
|
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
voice->Send[i].Filters[c].ActiveType = AF_None;
|
|
if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
|
|
if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
|
|
hfscale, 0.0f
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
|
|
lfscale, 0.0f
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
|
|
{
|
|
ALCdevice *Device = ALContext->Device;
|
|
ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
|
|
ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
|
|
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
|
|
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
|
|
ALfloat DopplerFactor, SpeedOfSound;
|
|
ALfloat AirAbsorptionFactor;
|
|
ALfloat RoomAirAbsorption[MAX_SENDS];
|
|
ALbufferlistitem *BufferListItem;
|
|
ALfloat Attenuation;
|
|
ALfloat RoomAttenuation[MAX_SENDS];
|
|
ALfloat MetersPerUnit;
|
|
ALfloat RoomRolloffBase;
|
|
ALfloat RoomRolloff[MAX_SENDS];
|
|
ALfloat DecayDistance[MAX_SENDS];
|
|
ALfloat DryGain;
|
|
ALfloat DryGainHF;
|
|
ALfloat DryGainLF;
|
|
ALboolean DryGainHFAuto;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALfloat WetGainLF[MAX_SENDS];
|
|
ALboolean WetGainAuto;
|
|
ALboolean WetGainHFAuto;
|
|
ALfloat Pitch;
|
|
ALuint Frequency;
|
|
ALint NumSends;
|
|
ALint i, j;
|
|
|
|
DryGainHF = 1.0f;
|
|
DryGainLF = 1.0f;
|
|
for(i = 0;i < MAX_SENDS;i++)
|
|
{
|
|
WetGainHF[i] = 1.0f;
|
|
WetGainLF[i] = 1.0f;
|
|
}
|
|
|
|
/* Get context/device properties */
|
|
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
|
|
SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
|
|
NumSends = Device->NumAuxSends;
|
|
Frequency = Device->Frequency;
|
|
|
|
/* Get listener properties */
|
|
ListenerGain = ALContext->Listener->Gain;
|
|
MetersPerUnit = ALContext->Listener->MetersPerUnit;
|
|
|
|
/* Get source properties */
|
|
SourceVolume = ALSource->Gain;
|
|
MinVolume = ALSource->MinGain;
|
|
MaxVolume = ALSource->MaxGain;
|
|
Pitch = ALSource->Pitch;
|
|
Position[0] = ALSource->Position[0];
|
|
Position[1] = ALSource->Position[1];
|
|
Position[2] = ALSource->Position[2];
|
|
Direction[0] = ALSource->Direction[0];
|
|
Direction[1] = ALSource->Direction[1];
|
|
Direction[2] = ALSource->Direction[2];
|
|
Velocity[0] = ALSource->Velocity[0];
|
|
Velocity[1] = ALSource->Velocity[1];
|
|
Velocity[2] = ALSource->Velocity[2];
|
|
MinDist = ALSource->RefDistance;
|
|
MaxDist = ALSource->MaxDistance;
|
|
Rolloff = ALSource->RollOffFactor;
|
|
InnerAngle = ALSource->InnerAngle;
|
|
OuterAngle = ALSource->OuterAngle;
|
|
AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
|
|
DryGainHFAuto = ALSource->DryGainHFAuto;
|
|
WetGainAuto = ALSource->WetGainAuto;
|
|
WetGainHFAuto = ALSource->WetGainHFAuto;
|
|
RoomRolloffBase = ALSource->RoomRolloffFactor;
|
|
|
|
voice->Direct.OutBuffer = Device->DryBuffer;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALeffectslot *Slot = ALSource->Send[i].Slot;
|
|
|
|
if(!Slot && i == 0)
|
|
Slot = Device->DefaultSlot;
|
|
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
|
|
{
|
|
Slot = NULL;
|
|
RoomRolloff[i] = 0.0f;
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = 1.0f;
|
|
}
|
|
else if(Slot->AuxSendAuto)
|
|
{
|
|
RoomRolloff[i] = RoomRolloffBase;
|
|
if(IsReverbEffect(Slot->EffectType))
|
|
{
|
|
RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
|
|
DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
|
|
SPEEDOFSOUNDMETRESPERSEC;
|
|
RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
|
|
}
|
|
else
|
|
{
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the slot's auxiliary send auto is off, the data sent to the
|
|
* effect slot is the same as the dry path, sans filter effects */
|
|
RoomRolloff[i] = Rolloff;
|
|
DecayDistance[i] = 0.0f;
|
|
RoomAirAbsorption[i] = AIRABSORBGAINHF;
|
|
}
|
|
|
|
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
|
|
voice->Send[i].OutBuffer = NULL;
|
|
else
|
|
voice->Send[i].OutBuffer = Slot->WetBuffer;
|
|
}
|
|
|
|
/* Transform source to listener space (convert to head relative) */
|
|
if(ALSource->HeadRelative == AL_FALSE)
|
|
{
|
|
ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
|
|
/* Transform source vectors */
|
|
aluMatrixVector(Position, 1.0f, Matrix);
|
|
aluMatrixVector(Direction, 0.0f, Matrix);
|
|
aluMatrixVector(Velocity, 0.0f, Matrix);
|
|
}
|
|
else
|
|
{
|
|
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
|
|
/* Offset the source velocity to be relative of the listener velocity */
|
|
Velocity[0] += ListenerVel[0];
|
|
Velocity[1] += ListenerVel[1];
|
|
Velocity[2] += ListenerVel[2];
|
|
}
|
|
|
|
SourceToListener[0] = -Position[0];
|
|
SourceToListener[1] = -Position[1];
|
|
SourceToListener[2] = -Position[2];
|
|
aluNormalize(SourceToListener);
|
|
aluNormalize(Direction);
|
|
|
|
/* Calculate distance attenuation */
|
|
Distance = sqrtf(aluDotproduct(Position, Position));
|
|
ClampedDist = Distance;
|
|
|
|
Attenuation = 1.0f;
|
|
for(i = 0;i < NumSends;i++)
|
|
RoomAttenuation[i] = 1.0f;
|
|
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
|
|
ALContext->DistanceModel)
|
|
{
|
|
case InverseDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
/*fall-through*/
|
|
case InverseDistance:
|
|
if(MinDist > 0.0f)
|
|
{
|
|
if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
|
|
Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
|
|
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LinearDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
/*fall-through*/
|
|
case LinearDistance:
|
|
if(MaxDist != MinDist)
|
|
{
|
|
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
|
|
Attenuation = maxf(Attenuation, 0.0f);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
|
|
RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ExponentDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
|
|
if(MaxDist < MinDist)
|
|
break;
|
|
/*fall-through*/
|
|
case ExponentDistance:
|
|
if(ClampedDist > 0.0f && MinDist > 0.0f)
|
|
{
|
|
Attenuation = powf(ClampedDist/MinDist, -Rolloff);
|
|
for(i = 0;i < NumSends;i++)
|
|
RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
|
|
}
|
|
break;
|
|
|
|
case DisableDistance:
|
|
ClampedDist = MinDist;
|
|
break;
|
|
}
|
|
|
|
/* Source Gain + Attenuation */
|
|
DryGain = SourceVolume * Attenuation;
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] = SourceVolume * RoomAttenuation[i];
|
|
|
|
/* Distance-based air absorption */
|
|
if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
|
|
{
|
|
ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
|
|
DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
|
|
}
|
|
|
|
if(WetGainAuto)
|
|
{
|
|
ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
|
|
|
|
/* Apply a decay-time transformation to the wet path, based on the
|
|
* attenuation of the dry path.
|
|
*
|
|
* Using the apparent distance, based on the distance attenuation, the
|
|
* initial decay of the reverb effect is calculated and applied to the
|
|
* wet path.
|
|
*/
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
if(DecayDistance[i] > 0.0f)
|
|
WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
|
|
}
|
|
}
|
|
|
|
/* Calculate directional soundcones */
|
|
Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
|
|
if(Angle > InnerAngle && Angle <= OuterAngle)
|
|
{
|
|
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
|
|
ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
|
|
ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
|
|
}
|
|
else if(Angle > OuterAngle)
|
|
{
|
|
ConeVolume = ALSource->OuterGain;
|
|
ConeHF = ALSource->OuterGainHF;
|
|
}
|
|
else
|
|
{
|
|
ConeVolume = 1.0f;
|
|
ConeHF = 1.0f;
|
|
}
|
|
|
|
DryGain *= ConeVolume;
|
|
if(WetGainAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= ConeVolume;
|
|
}
|
|
if(DryGainHFAuto)
|
|
DryGainHF *= ConeHF;
|
|
if(WetGainHFAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGainHF[i] *= ConeHF;
|
|
}
|
|
|
|
/* Clamp to Min/Max Gain */
|
|
DryGain = clampf(DryGain, MinVolume, MaxVolume);
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
|
|
|
|
/* Apply gain and frequency filters */
|
|
DryGain *= ALSource->Direct.Gain * ListenerGain;
|
|
DryGainHF *= ALSource->Direct.GainHF;
|
|
DryGainLF *= ALSource->Direct.GainLF;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
|
|
WetGainHF[i] *= ALSource->Send[i].GainHF;
|
|
WetGainLF[i] *= ALSource->Send[i].GainLF;
|
|
}
|
|
|
|
/* Calculate velocity-based doppler effect */
|
|
if(DopplerFactor > 0.0f)
|
|
{
|
|
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
|
|
ALfloat VSS, VLS;
|
|
|
|
if(SpeedOfSound < 1.0f)
|
|
{
|
|
DopplerFactor *= 1.0f/SpeedOfSound;
|
|
SpeedOfSound = 1.0f;
|
|
}
|
|
|
|
VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
|
|
VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
|
|
|
|
Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
|
|
clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
|
|
}
|
|
|
|
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
|
|
while(BufferListItem != NULL)
|
|
{
|
|
ALbuffer *ALBuffer;
|
|
if((ALBuffer=BufferListItem->buffer) != NULL)
|
|
{
|
|
/* Calculate fixed-point stepping value, based on the pitch, buffer
|
|
* frequency, and output frequency. */
|
|
Pitch = Pitch * ALBuffer->Frequency / Frequency;
|
|
if(Pitch > (ALfloat)MAX_PITCH)
|
|
voice->Step = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
{
|
|
voice->Step = fastf2i(Pitch*FRACTIONONE);
|
|
if(voice->Step == 0)
|
|
voice->Step = 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
BufferListItem = BufferListItem->next;
|
|
}
|
|
|
|
if(Device->Hrtf)
|
|
{
|
|
/* Use a binaural HRTF algorithm for stereo headphone playback */
|
|
ALfloat delta, ev = 0.0f, az = 0.0f;
|
|
ALfloat radius = ALSource->Radius;
|
|
ALfloat dirfact = 1.0f;
|
|
|
|
if(Distance > FLT_EPSILON)
|
|
{
|
|
ALfloat invlen = 1.0f/Distance;
|
|
Position[0] *= invlen;
|
|
Position[1] *= invlen;
|
|
Position[2] *= invlen;
|
|
|
|
/* Calculate elevation and azimuth only when the source is not at
|
|
* the listener. This prevents +0 and -0 Z from producing
|
|
* inconsistent panning. Also, clamp Y in case FP precision errors
|
|
* cause it to land outside of -1..+1. */
|
|
ev = asinf(clampf(Position[1], -1.0f, 1.0f));
|
|
az = atan2f(Position[0], -Position[2]*ZScale);
|
|
}
|
|
if(radius > Distance)
|
|
dirfact *= Distance / radius;
|
|
|
|
/* Check to see if the HRIR is already moving. */
|
|
if(voice->Direct.Moving)
|
|
{
|
|
/* Calculate the normalized HRTF transition factor (delta). */
|
|
delta = CalcHrtfDelta(voice->Direct.Mix.Hrtf.Gain, DryGain,
|
|
voice->Direct.Mix.Hrtf.Dir, Position);
|
|
/* If the delta is large enough, get the moving HRIR target
|
|
* coefficients, target delays, steppping values, and counter. */
|
|
if(delta > 0.001f)
|
|
{
|
|
ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
|
|
ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
|
|
voice->Direct.Mix.Hrtf.Params[0].Coeffs, voice->Direct.Mix.Hrtf.Params[0].Delay,
|
|
voice->Direct.Mix.Hrtf.Params[0].CoeffStep, voice->Direct.Mix.Hrtf.Params[0].DelayStep
|
|
);
|
|
voice->Direct.Counter = counter;
|
|
voice->Direct.Mix.Hrtf.Gain = DryGain;
|
|
voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
|
|
voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
|
|
voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get the initial (static) HRIR coefficients and delays. */
|
|
GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
|
|
voice->Direct.Mix.Hrtf.Params[0].Coeffs,
|
|
voice->Direct.Mix.Hrtf.Params[0].Delay);
|
|
voice->Direct.Counter = 0;
|
|
voice->Direct.Moving = AL_TRUE;
|
|
voice->Direct.Mix.Hrtf.Gain = DryGain;
|
|
voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
|
|
voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
|
|
voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
|
|
}
|
|
voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
|
|
|
|
voice->IsHrtf = AL_TRUE;
|
|
}
|
|
else
|
|
{
|
|
MixGains *gains = voice->Direct.Mix.Gains[0];
|
|
ALfloat Target[MaxChannels];
|
|
|
|
/* Normalize the length, and compute panned gains. */
|
|
if(!(Distance > FLT_EPSILON))
|
|
{
|
|
Position[0] = Position[1] = Position[2] = 0.0f;
|
|
ComputeAmbientGains(Device, DryGain, Target);
|
|
}
|
|
else
|
|
{
|
|
ALfloat radius = ALSource->Radius;
|
|
ALfloat invlen = 1.0f/maxf(Distance, radius);
|
|
Position[0] *= invlen;
|
|
Position[1] *= invlen;
|
|
Position[2] *= invlen;
|
|
ComputeDirectionalGains(Device, Position, DryGain, Target);
|
|
}
|
|
|
|
for(j = 0;j < MaxChannels;j++)
|
|
gains[j].Target = Target[j];
|
|
UpdateDryStepping(&voice->Direct, 1);
|
|
|
|
voice->IsHrtf = AL_FALSE;
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
voice->Send[i].Gain.Target = WetGain[i];
|
|
UpdateWetStepping(&voice->Send[i]);
|
|
}
|
|
|
|
{
|
|
ALfloat gainhf = maxf(0.01f, DryGainHF);
|
|
ALfloat gainlf = maxf(0.01f, DryGainLF);
|
|
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
|
|
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
|
|
voice->Direct.Filters[0].ActiveType = AF_None;
|
|
if(gainhf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
|
|
if(gainlf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
|
|
hfscale, 0.0f
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
|
|
lfscale, 0.0f
|
|
);
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
|
|
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
|
|
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
|
|
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
|
|
voice->Send[i].Filters[0].ActiveType = AF_None;
|
|
if(gainhf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
|
|
if(gainlf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
|
|
hfscale, 0.0f
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
|
|
lfscale, 0.0f
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
static inline ALint aluF2I25(ALfloat val)
|
|
{
|
|
/* Clamp the value between -1 and +1. This handles that with only a single branch. */
|
|
if(fabsf(val) > 1.0f)
|
|
val = (ALfloat)((0.0f < val) - (val < 0.0f));
|
|
/* Convert to a signed integer, between -16777215 and +16777215. */
|
|
return fastf2i(val*16777215.0f);
|
|
}
|
|
|
|
static inline ALfloat aluF2F(ALfloat val)
|
|
{ return val; }
|
|
static inline ALint aluF2I(ALfloat val)
|
|
{ return aluF2I25(val)<<7; }
|
|
static inline ALuint aluF2UI(ALfloat val)
|
|
{ return aluF2I(val)+2147483648u; }
|
|
static inline ALshort aluF2S(ALfloat val)
|
|
{ return aluF2I25(val)>>9; }
|
|
static inline ALushort aluF2US(ALfloat val)
|
|
{ return aluF2S(val)+32768; }
|
|
static inline ALbyte aluF2B(ALfloat val)
|
|
{ return aluF2I25(val)>>17; }
|
|
static inline ALubyte aluF2UB(ALfloat val)
|
|
{ return aluF2B(val)+128; }
|
|
|
|
#define DECL_TEMPLATE(T, func) \
|
|
static void Write_##T(ALCdevice *device, ALvoid **buffer, ALuint SamplesToDo) \
|
|
{ \
|
|
ALfloat (*restrict DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
|
|
const ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
|
|
const enum Channel *chans = device->ChannelName; \
|
|
ALuint i, j; \
|
|
\
|
|
for(j = 0;j < MaxChannels;j++) \
|
|
{ \
|
|
const enum Channel c = chans[j]; \
|
|
const ALfloat *in; \
|
|
T *restrict out; \
|
|
\
|
|
if(c == InvalidChannel) \
|
|
continue; \
|
|
\
|
|
in = DryBuffer[c]; \
|
|
out = (T*)(*buffer) + j; \
|
|
for(i = 0;i < SamplesToDo;i++) \
|
|
out[i*numchans] = func(in[i]); \
|
|
} \
|
|
*buffer = (char*)(*buffer) + SamplesToDo*numchans*sizeof(T); \
|
|
}
|
|
|
|
DECL_TEMPLATE(ALfloat, aluF2F)
|
|
DECL_TEMPLATE(ALuint, aluF2UI)
|
|
DECL_TEMPLATE(ALint, aluF2I)
|
|
DECL_TEMPLATE(ALushort, aluF2US)
|
|
DECL_TEMPLATE(ALshort, aluF2S)
|
|
DECL_TEMPLATE(ALubyte, aluF2UB)
|
|
DECL_TEMPLATE(ALbyte, aluF2B)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
|
|
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
|
|
{
|
|
ALuint SamplesToDo;
|
|
ALeffectslot **slot, **slot_end;
|
|
ALvoice *voice, *voice_end;
|
|
ALCcontext *ctx;
|
|
FPUCtl oldMode;
|
|
ALuint i, c;
|
|
|
|
SetMixerFPUMode(&oldMode);
|
|
|
|
while(size > 0)
|
|
{
|
|
IncrementRef(&device->MixCount);
|
|
|
|
SamplesToDo = minu(size, BUFFERSIZE);
|
|
for(c = 0;c < MaxChannels;c++)
|
|
memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
|
|
|
|
V0(device->Backend,lock)();
|
|
V(device->Synth,process)(SamplesToDo, device->DryBuffer);
|
|
|
|
ctx = ATOMIC_LOAD(&device->ContextList);
|
|
while(ctx)
|
|
{
|
|
ALenum DeferUpdates = ctx->DeferUpdates;
|
|
ALenum UpdateSources = AL_FALSE;
|
|
|
|
if(!DeferUpdates)
|
|
UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
|
|
|
|
if(UpdateSources)
|
|
CalcListenerParams(ctx->Listener);
|
|
|
|
/* source processing */
|
|
voice = ctx->Voices;
|
|
voice_end = voice + ctx->VoiceCount;
|
|
while(voice != voice_end)
|
|
{
|
|
ALsource *source = voice->Source;
|
|
if(!source) goto next;
|
|
|
|
if(source->state != AL_PLAYING && source->state != AL_PAUSED)
|
|
{
|
|
voice->Source = NULL;
|
|
goto next;
|
|
}
|
|
|
|
if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
|
|
UpdateSources))
|
|
voice->Update(voice, source, ctx);
|
|
|
|
if(source->state != AL_PAUSED)
|
|
MixSource(voice, source, device, SamplesToDo);
|
|
next:
|
|
voice++;
|
|
}
|
|
|
|
/* effect slot processing */
|
|
slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
|
|
slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
|
|
while(slot != slot_end)
|
|
{
|
|
if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
|
|
V((*slot)->EffectState,update)(device, *slot);
|
|
|
|
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
|
|
device->DryBuffer);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
(*slot)->WetBuffer[0][i] = 0.0f;
|
|
|
|
slot++;
|
|
}
|
|
|
|
ctx = ctx->next;
|
|
}
|
|
|
|
slot = &device->DefaultSlot;
|
|
if(*slot != NULL)
|
|
{
|
|
if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
|
|
V((*slot)->EffectState,update)(device, *slot);
|
|
|
|
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
|
|
device->DryBuffer);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
(*slot)->WetBuffer[0][i] = 0.0f;
|
|
}
|
|
|
|
/* Increment the clock time. Every second's worth of samples is
|
|
* converted and added to clock base so that large sample counts don't
|
|
* overflow during conversion. This also guarantees an exact, stable
|
|
* conversion. */
|
|
device->SamplesDone += SamplesToDo;
|
|
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
|
|
device->SamplesDone %= device->Frequency;
|
|
V0(device->Backend,unlock)();
|
|
|
|
if(device->Bs2b)
|
|
{
|
|
/* Apply binaural/crossfeed filter */
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
float samples[2];
|
|
samples[0] = device->DryBuffer[FrontLeft][i];
|
|
samples[1] = device->DryBuffer[FrontRight][i];
|
|
bs2b_cross_feed(device->Bs2b, samples);
|
|
device->DryBuffer[FrontLeft][i] = samples[0];
|
|
device->DryBuffer[FrontRight][i] = samples[1];
|
|
}
|
|
}
|
|
|
|
if(buffer)
|
|
{
|
|
switch(device->FmtType)
|
|
{
|
|
case DevFmtByte:
|
|
Write_ALbyte(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtUByte:
|
|
Write_ALubyte(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtShort:
|
|
Write_ALshort(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtUShort:
|
|
Write_ALushort(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtInt:
|
|
Write_ALint(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtUInt:
|
|
Write_ALuint(device, &buffer, SamplesToDo);
|
|
break;
|
|
case DevFmtFloat:
|
|
Write_ALfloat(device, &buffer, SamplesToDo);
|
|
break;
|
|
}
|
|
}
|
|
|
|
size -= SamplesToDo;
|
|
IncrementRef(&device->MixCount);
|
|
}
|
|
|
|
RestoreFPUMode(&oldMode);
|
|
}
|
|
|
|
|
|
ALvoid aluHandleDisconnect(ALCdevice *device)
|
|
{
|
|
ALCcontext *Context;
|
|
|
|
device->Connected = ALC_FALSE;
|
|
|
|
Context = ATOMIC_LOAD(&device->ContextList);
|
|
while(Context)
|
|
{
|
|
ALvoice *voice, *voice_end;
|
|
|
|
voice = Context->Voices;
|
|
voice_end = voice + Context->VoiceCount;
|
|
while(voice != voice_end)
|
|
{
|
|
ALsource *source = voice->Source;
|
|
voice->Source = NULL;
|
|
|
|
if(source && source->state == AL_PLAYING)
|
|
{
|
|
source->state = AL_STOPPED;
|
|
ATOMIC_STORE(&source->current_buffer, NULL);
|
|
source->position = 0;
|
|
source->position_fraction = 0;
|
|
}
|
|
|
|
voice++;
|
|
}
|
|
Context->VoiceCount = 0;
|
|
|
|
Context = Context->next;
|
|
}
|
|
}
|