openal-soft/Alc/ringbuffer.cpp
2018-12-08 14:22:20 -08:00

301 lines
8.1 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include "ringbuffer.h"
#include "atomic.h"
#include "threads.h"
#include "almalloc.h"
#include "compat.h"
/* NOTE: This lockless ringbuffer implementation is copied from JACK, extended
* to include an element size. Consequently, parameters and return values for a
* size or count is in 'elements', not bytes. Additionally, it only supports
* single-consumer/single-provider operation. */
struct ll_ringbuffer {
std::atomic<size_t> write_ptr{0u};
std::atomic<size_t> read_ptr{0u};
size_t size{0u};
size_t size_mask{0u};
size_t elem_size{0u};
alignas(16) char buf[];
DEF_PLACE_NEWDEL()
};
ll_ringbuffer_t *ll_ringbuffer_create(size_t sz, size_t elem_sz, int limit_writes)
{
ll_ringbuffer_t *rb;
size_t power_of_two = 0;
if(sz > 0)
{
power_of_two = sz;
power_of_two |= power_of_two>>1;
power_of_two |= power_of_two>>2;
power_of_two |= power_of_two>>4;
power_of_two |= power_of_two>>8;
power_of_two |= power_of_two>>16;
#if SIZE_MAX > UINT_MAX
power_of_two |= power_of_two>>32;
#endif
}
power_of_two++;
if(power_of_two < sz) return NULL;
rb = new (al_malloc(16, sizeof(*rb) + power_of_two*elem_sz)) ll_ringbuffer{};
rb->size = limit_writes ? sz : power_of_two;
rb->size_mask = power_of_two - 1;
rb->elem_size = elem_sz;
return rb;
}
void ll_ringbuffer_free(ll_ringbuffer_t *rb)
{
delete rb;
}
void ll_ringbuffer_reset(ll_ringbuffer_t *rb)
{
rb->write_ptr.store(0, std::memory_order_relaxed);
rb->read_ptr.store(0, std::memory_order_relaxed);
std::fill_n(rb->buf+0, (rb->size_mask+1)*rb->elem_size, 0);
}
size_t ll_ringbuffer_read_space(const ll_ringbuffer_t *rb)
{
size_t w = rb->write_ptr.load(std::memory_order_acquire);
size_t r = rb->read_ptr.load(std::memory_order_acquire);
return (w-r) & rb->size_mask;
}
size_t ll_ringbuffer_write_space(const ll_ringbuffer_t *rb)
{
size_t w = rb->write_ptr.load(std::memory_order_acquire);
size_t r = rb->read_ptr.load(std::memory_order_acquire);
w = (r-w-1) & rb->size_mask;
return (w > rb->size) ? rb->size : w;
}
size_t ll_ringbuffer_read(ll_ringbuffer_t *rb, void *dest, size_t cnt)
{
size_t read_ptr;
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
read_ptr = rb->read_ptr.load(std::memory_order_relaxed) & rb->size_mask;
cnt2 = read_ptr + to_read;
if(cnt2 > rb->size_mask+1)
{
n1 = rb->size_mask+1 - read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &rb->buf[read_ptr*rb->elem_size], n1*rb->elem_size);
read_ptr += n1;
if(n2)
{
memcpy(static_cast<char*>(dest) + n1*rb->elem_size,
&rb->buf[(read_ptr&rb->size_mask)*rb->elem_size],
n2*rb->elem_size);
read_ptr += n2;
}
rb->read_ptr.store(read_ptr, std::memory_order_release);
return to_read;
}
size_t ll_ringbuffer_peek(ll_ringbuffer_t *rb, void *dest, size_t cnt)
{
size_t free_cnt;
size_t cnt2;
size_t to_read;
size_t n1, n2;
size_t read_ptr;
free_cnt = ll_ringbuffer_read_space(rb);
if(free_cnt == 0) return 0;
to_read = (cnt > free_cnt) ? free_cnt : cnt;
read_ptr = rb->read_ptr.load(std::memory_order_relaxed) & rb->size_mask;
cnt2 = read_ptr + to_read;
if(cnt2 > rb->size_mask+1)
{
n1 = rb->size_mask+1 - read_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_read;
n2 = 0;
}
memcpy(dest, &rb->buf[read_ptr*rb->elem_size], n1*rb->elem_size);
if(n2)
{
read_ptr += n1;
memcpy(static_cast<char*>(dest) + n1*rb->elem_size,
&rb->buf[(read_ptr&rb->size_mask)*rb->elem_size],
n2*rb->elem_size);
}
return to_read;
}
size_t ll_ringbuffer_write(ll_ringbuffer_t *rb, const void *src, size_t cnt)
{
size_t write_ptr;
size_t free_cnt;
size_t cnt2;
size_t to_write;
size_t n1, n2;
free_cnt = ll_ringbuffer_write_space(rb);
if(free_cnt == 0) return 0;
to_write = (cnt > free_cnt) ? free_cnt : cnt;
write_ptr = rb->write_ptr.load(std::memory_order_relaxed) & rb->size_mask;
cnt2 = write_ptr + to_write;
if(cnt2 > rb->size_mask+1)
{
n1 = rb->size_mask+1 - write_ptr;
n2 = cnt2 & rb->size_mask;
}
else
{
n1 = to_write;
n2 = 0;
}
memcpy(&rb->buf[write_ptr*rb->elem_size], src, n1*rb->elem_size);
write_ptr += n1;
if(n2)
{
memcpy(&rb->buf[(write_ptr&rb->size_mask)*rb->elem_size],
static_cast<const char*>(src) + n1*rb->elem_size,
n2*rb->elem_size);
write_ptr += n2;
}
rb->write_ptr.store(write_ptr, std::memory_order_release);
return to_write;
}
void ll_ringbuffer_read_advance(ll_ringbuffer_t *rb, size_t cnt)
{
rb->read_ptr.fetch_add(cnt, std::memory_order_acq_rel);
}
void ll_ringbuffer_write_advance(ll_ringbuffer_t *rb, size_t cnt)
{
rb->write_ptr.fetch_add(cnt, std::memory_order_acq_rel);
}
ll_ringbuffer_data_pair ll_ringbuffer_get_read_vector(const ll_ringbuffer_t *rb)
{
ll_ringbuffer_data_pair ret;
size_t free_cnt;
size_t cnt2;
size_t w = rb->write_ptr.load(std::memory_order_acquire);
size_t r = rb->read_ptr.load(std::memory_order_acquire);
w &= rb->size_mask;
r &= rb->size_mask;
free_cnt = (w-r) & rb->size_mask;
cnt2 = r + free_cnt;
if(cnt2 > rb->size_mask+1)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
ret.first.buf = const_cast<char*>(&rb->buf[r*rb->elem_size]);
ret.first.len = rb->size_mask+1 - r;
ret.second.buf = const_cast<char*>(rb->buf);
ret.second.len = cnt2 & rb->size_mask;
}
else
{
/* Single part vector: just the rest of the buffer */
ret.first.buf = const_cast<char*>(&rb->buf[r*rb->elem_size]);
ret.first.len = free_cnt;
ret.second.buf = nullptr;
ret.second.len = 0;
}
return ret;
}
ll_ringbuffer_data_pair ll_ringbuffer_get_write_vector(const ll_ringbuffer_t *rb)
{
ll_ringbuffer_data_pair ret;
size_t free_cnt;
size_t cnt2;
size_t w = rb->write_ptr.load(std::memory_order_acquire);
size_t r = rb->read_ptr.load(std::memory_order_acquire);
w &= rb->size_mask;
r &= rb->size_mask;
free_cnt = (r-w-1) & rb->size_mask;
if(free_cnt > rb->size) free_cnt = rb->size;
cnt2 = w + free_cnt;
if(cnt2 > rb->size_mask+1)
{
/* Two part vector: the rest of the buffer after the current write ptr,
* plus some from the start of the buffer. */
ret.first.buf = const_cast<char*>(&rb->buf[w*rb->elem_size]);
ret.first.len = rb->size_mask+1 - w;
ret.second.buf = const_cast<char*>(rb->buf);
ret.second.len = cnt2 & rb->size_mask;
}
else
{
ret.first.buf = const_cast<char*>(&rb->buf[w*rb->elem_size]);
ret.first.len = free_cnt;
ret.second.buf = nullptr;
ret.second.len = 0;
}
return ret;
}