openal-soft/Alc/bformatdec.cpp

304 lines
11 KiB
C++

#include "config.h"
#include <cmath>
#include <array>
#include <vector>
#include <numeric>
#include <algorithm>
#include <functional>
#include "bformatdec.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "alu.h"
#include "threads.h"
#include "almalloc.h"
namespace {
#define HF_BAND 0
#define LF_BAND 1
static_assert(BFormatDec::sNumBands == 2, "Unexpected BFormatDec::sNumBands");
static_assert(AmbiUpsampler::sNumBands == 2, "Unexpected AmbiUpsampler::sNumBands");
/* These points are in AL coordinates! */
constexpr ALfloat Ambi3DPoints[8][3] = {
{ -0.577350269f, 0.577350269f, -0.577350269f },
{ 0.577350269f, 0.577350269f, -0.577350269f },
{ -0.577350269f, 0.577350269f, 0.577350269f },
{ 0.577350269f, 0.577350269f, 0.577350269f },
{ -0.577350269f, -0.577350269f, -0.577350269f },
{ 0.577350269f, -0.577350269f, -0.577350269f },
{ -0.577350269f, -0.577350269f, 0.577350269f },
{ 0.577350269f, -0.577350269f, 0.577350269f },
};
constexpr ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = {
{ 0.125f, 0.125f, 0.125f, 0.125f },
{ 0.125f, -0.125f, 0.125f, 0.125f },
{ 0.125f, 0.125f, 0.125f, -0.125f },
{ 0.125f, -0.125f, 0.125f, -0.125f },
{ 0.125f, 0.125f, -0.125f, 0.125f },
{ 0.125f, -0.125f, -0.125f, 0.125f },
{ 0.125f, 0.125f, -0.125f, -0.125f },
{ 0.125f, -0.125f, -0.125f, -0.125f },
};
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = {
2.0f,
1.15470054f, 1.15470054f, 1.15470054f
};
auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const float(&)[MAX_AMBI_COEFFS]
{
if(scaletype == AmbDecScale::FuMa) return AmbiScale::FuMa2N3D;
if(scaletype == AmbDecScale::SN3D) return AmbiScale::SN3D2N3D;
return AmbiScale::N3D2N3D;
}
} // namespace
void BFormatDec::reset(const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei (&chanmap)[MAX_OUTPUT_CHANNELS])
{
static constexpr ALsizei map2DTo3D[MAX_AMBI2D_COEFFS]{ 0, 1, 3, 4, 8, 9, 15 };
mSamples.clear();
mSamplesHF = nullptr;
mSamplesLF = nullptr;
mNumChannels = chancount;
mSamples.resize(chancount * 2);
mSamplesHF = mSamples.data();
mSamplesLF = mSamplesHF + chancount;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u,
[](ALuint mask, const ALsizei &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
mUpSampler[0].XOver.init(400.0f / (float)srate);
std::fill(std::begin(mUpSampler[0].Gains), std::end(mUpSampler[0].Gains), 0.0f);
std::fill(std::begin(mUpSampler)+1, std::end(mUpSampler), mUpSampler[0]);
const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0};
if(periphonic)
{
ALfloat encgains[8][MAX_OUTPUT_CHANNELS]{};
for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++)
{
ALfloat coeffs[MAX_AMBI_COEFFS];
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
std::copy(std::begin(coeffs), std::begin(coeffs)+chancount, std::begin(encgains[k]));
}
assert(chancount >= 4);
for(ALsizei i{0};i < 4;i++)
{
ALdouble gain{0.0};
for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++)
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][i];
mUpSampler[i].Gains[HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
mUpSampler[i].Gains[LF_BAND] = (ALfloat)gain;
}
}
else
{
ALfloat encgains[8][MAX_OUTPUT_CHANNELS]{};
for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++)
{
ALfloat coeffs[MAX_AMBI_COEFFS];
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
auto ambimap_end = std::begin(map2DTo3D) + chancount;
std::transform(std::begin(map2DTo3D), ambimap_end, std::begin(encgains[k]),
[&coeffs](const ALsizei &index) noexcept -> ALfloat
{ ASSUME(index > 0); return coeffs[index]; }
);
}
assert(chancount >= 3);
for(ALsizei c{0};c < 3;c++)
{
const ALsizei i{map2DTo3D[c]};
ALdouble gain{0.0};
for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++)
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][c];
mUpSampler[c].Gains[HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
mUpSampler[c].Gains[LF_BAND] = (ALfloat)gain;
}
mUpSampler[3].Gains[HF_BAND] = 0.0f;
mUpSampler[3].Gains[LF_BAND] = 0.0f;
}
const float (&coeff_scale)[MAX_AMBI_COEFFS] = GetAmbiScales(conf->CoeffScale);
const ALsizei coeff_count{periphonic ? MAX_AMBI_COEFFS : MAX_AMBI2D_COEFFS};
mMatrix = MatrixU{};
mDualBand = (conf->FreqBands == 2);
if(!mDualBand)
{
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[MAX_AMBI_COEFFS] = mMatrix.Single[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
const ALsizei l{periphonic ? j : map2DTo3D[j]};
if(!(conf->ChanMask&(1<<l))) continue;
mtx[j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]);
++k;
}
}
}
else
{
mXOver[0].init(conf->XOverFreq / (float)srate);
std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);
const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[sNumBands][MAX_AMBI_COEFFS] = mMatrix.Dual[chanmap[i]];
for(ALsizei j{0},k{0};j < coeff_count;j++)
{
const ALsizei l{periphonic ? j : map2DTo3D[j]};
if(!(conf->ChanMask&(1<<l))) continue;
mtx[HF_BAND][j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio;
mtx[LF_BAND][j] = conf->LFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->LFOrderGain[3] :
(l>=4) ? conf->LFOrderGain[2] :
(l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio;
++k;
}
}
}
}
void BFormatDec::process(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
ASSUME(OutChannels > 0);
ASSUME(SamplesToDo > 0);
if(mDualBand)
{
for(ALsizei i{0};i < mNumChannels;i++)
mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i],
SamplesToDo);
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
std::fill(std::begin(mChannelMix), std::begin(mChannelMix)+SamplesToDo, 0.0f);
MixRowSamples(mChannelMix, mMatrix.Dual[chan][HF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesHF[0]),
mNumChannels, 0, SamplesToDo
);
MixRowSamples(mChannelMix, mMatrix.Dual[chan][LF_BAND],
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamplesLF[0]),
mNumChannels, 0, SamplesToDo
);
std::transform(std::begin(mChannelMix), std::begin(mChannelMix)+SamplesToDo,
OutBuffer[chan], OutBuffer[chan], std::plus<float>());
}
}
else
{
for(ALsizei chan{0};chan < OutChannels;chan++)
{
if(UNLIKELY(!(mEnabled&(1<<chan))))
continue;
std::fill(std::begin(mChannelMix), std::begin(mChannelMix)+SamplesToDo, 0.0f);
MixRowSamples(mChannelMix, mMatrix.Single[chan], InSamples,
mNumChannels, 0, SamplesToDo);
std::transform(std::begin(mChannelMix), std::begin(mChannelMix)+SamplesToDo,
OutBuffer[chan], OutBuffer[chan], std::plus<float>());
}
}
}
void BFormatDec::upSample(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei InChannels, const ALsizei SamplesToDo)
{
ASSUME(InChannels > 0);
ASSUME(SamplesToDo > 0);
/* This up-sampler leverages the differences observed in dual-band higher-
* order decoder matrices compared to first-order. For the same output
* channel configuration, the low-frequency matrix has identical
* coefficients in the shared input channels, while the high-frequency
* matrix has extra scalars applied to the W channel and X/Y/Z channels.
* Mixing the first-order content into the higher-order stream with the
* appropriate counter-scales applied to the HF response results in the
* subsequent higher-order decode generating the same response as a first-
* order decode.
*/
for(ALsizei i{0};i < InChannels;i++)
{
/* First, split the first-order components into low and high frequency
* bands.
*/
mUpSampler[i].XOver.process(mSamples[HF_BAND].data(), mSamples[LF_BAND].data(),
InSamples[i], SamplesToDo);
/* Now write each band to the output. */
MixRowSamples(OutBuffer[i], mUpSampler[i].Gains,
&reinterpret_cast<ALfloat(&)[BUFFERSIZE]>(mSamples[0]),
sNumBands, 0, SamplesToDo);
}
}
void AmbiUpsampler::reset(const ALCdevice *device)
{
mXOver[0].init(400.0f / (float)device->Frequency);
std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);
ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
for(size_t k{0u};k < COUNTOF(Ambi3DPoints);k++)
{
ALfloat coeffs[MAX_AMBI_COEFFS];
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
}
/* Combine the matrices that do the in->virt and virt->out conversions so
* we get a single in->out conversion. NOTE: the Encoder matrix (encgains)
* and output are transposed, so the input channels line up with the rows
* and the output channels line up with the columns.
*/
mGains.fill({});
for(ALsizei i{0};i < 4;i++)
{
for(ALsizei j{0};j < device->Dry.NumChannels;j++)
{
ALdouble gain{0.0};
for(size_t k{0u};k < COUNTOF(Ambi3DDecoder);k++)
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j];
mGains[i][HF_BAND][j] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
mGains[i][LF_BAND][j] = (ALfloat)gain;
}
}
}
void AmbiUpsampler::process(ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], const ALsizei SamplesToDo)
{
for(ALsizei i{0};i < 4;i++)
{
mXOver[i].process(mSamples[HF_BAND], mSamples[LF_BAND], InSamples[i], SamplesToDo);
MixSamples(mSamples[HF_BAND], OutChannels, OutBuffer, mGains[i][HF_BAND].data(),
mGains[i][HF_BAND].data(), 0, 0, SamplesToDo);
MixSamples(mSamples[LF_BAND], OutChannels, OutBuffer, mGains[i][LF_BAND].data(),
mGains[i][LF_BAND].data(), 0, 0, SamplesToDo);
}
}