e13c6bca20
Using all the HRIRs seems to have problems with volume balancing, due in part to HRTF data sets not having uniform enough measurements for a simple decoder matrix to work (and generating a proper one that would work better is not that easy). This still maintains the benefits of decoding ambisonics directly to HRTF, namely that it only needs to filter the 4 ambisonic channels and can use more optimized HRTF filtering methods on those channels. It can also be improved further with frequency-dependent processing baked into the generated coefficients, incurring no extra run-time cost for it.
1152 lines
34 KiB
C
1152 lines
34 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2011 by Chris Robinson
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alSource.h"
|
|
#include "alu.h"
|
|
#include "hrtf.h"
|
|
|
|
#include "compat.h"
|
|
#include "almalloc.h"
|
|
|
|
|
|
/* Current data set limits defined by the makehrtf utility. */
|
|
#define MIN_IR_SIZE (8)
|
|
#define MAX_IR_SIZE (128)
|
|
#define MOD_IR_SIZE (8)
|
|
|
|
#define MIN_EV_COUNT (5)
|
|
#define MAX_EV_COUNT (128)
|
|
|
|
#define MIN_AZ_COUNT (1)
|
|
#define MAX_AZ_COUNT (128)
|
|
|
|
static const ALchar magicMarker00[8] = "MinPHR00";
|
|
static const ALchar magicMarker01[8] = "MinPHR01";
|
|
|
|
/* First value for pass-through coefficients (remaining are 0), used for omni-
|
|
* directional sounds. */
|
|
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
|
|
|
|
static struct Hrtf *LoadedHrtfs = NULL;
|
|
|
|
/* Calculate the elevation indices given the polar elevation in radians.
|
|
* This will return two indices between 0 and (evcount - 1) and an
|
|
* interpolation factor between 0.0 and 1.0.
|
|
*/
|
|
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
|
|
{
|
|
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
|
|
evidx[0] = fastf2u(ev);
|
|
evidx[1] = minu(evidx[0] + 1, evcount-1);
|
|
*evmu = ev - evidx[0];
|
|
}
|
|
|
|
/* Calculate the azimuth indices given the polar azimuth in radians. This
|
|
* will return two indices between 0 and (azcount - 1) and an interpolation
|
|
* factor between 0.0 and 1.0.
|
|
*/
|
|
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
|
|
{
|
|
az = (F_TAU + az) * azcount / F_TAU;
|
|
azidx[0] = fastf2u(az) % azcount;
|
|
azidx[1] = (azidx[0] + 1) % azcount;
|
|
*azmu = az - floorf(az);
|
|
}
|
|
|
|
/* Calculates static HRIR coefficients and delays for the given polar
|
|
* elevation and azimuth in radians. Linear interpolation is used to
|
|
* increase the apparent resolution of the HRIR data set. The coefficients
|
|
* are also normalized and attenuated by the specified gain.
|
|
*/
|
|
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
|
|
{
|
|
ALuint evidx[2], lidx[4], ridx[4];
|
|
ALfloat mu[3], blend[4];
|
|
ALfloat dirfact;
|
|
ALuint i;
|
|
|
|
dirfact = 1.0f - (spread / F_TAU);
|
|
|
|
/* Claculate elevation indices and interpolation factor. */
|
|
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
|
|
|
|
for(i = 0;i < 2;i++)
|
|
{
|
|
ALuint azcount = Hrtf->azCount[evidx[i]];
|
|
ALuint evoffset = Hrtf->evOffset[evidx[i]];
|
|
ALuint azidx[2];
|
|
|
|
/* Calculate azimuth indices and interpolation factor for this elevation. */
|
|
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
|
|
|
|
/* Calculate a set of linear HRIR indices for left and right channels. */
|
|
lidx[i*2 + 0] = evoffset + azidx[0];
|
|
lidx[i*2 + 1] = evoffset + azidx[1];
|
|
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
|
|
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
|
|
}
|
|
|
|
/* Calculate 4 blending weights for 2D bilinear interpolation. */
|
|
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
|
|
blend[1] = ( mu[0]) * (1.0f-mu[2]);
|
|
blend[2] = (1.0f-mu[1]) * ( mu[2]);
|
|
blend[3] = ( mu[1]) * ( mu[2]);
|
|
|
|
/* Calculate the HRIR delays using linear interpolation. */
|
|
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
|
|
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
|
|
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
|
|
/* Calculate the sample offsets for the HRIR indices. */
|
|
lidx[0] *= Hrtf->irSize;
|
|
lidx[1] *= Hrtf->irSize;
|
|
lidx[2] *= Hrtf->irSize;
|
|
lidx[3] *= Hrtf->irSize;
|
|
ridx[0] *= Hrtf->irSize;
|
|
ridx[1] *= Hrtf->irSize;
|
|
ridx[2] *= Hrtf->irSize;
|
|
ridx[3] *= Hrtf->irSize;
|
|
|
|
/* Calculate the normalized and attenuated HRIR coefficients using linear
|
|
* interpolation when there is enough gain to warrant it. Zero the
|
|
* coefficients if gain is too low.
|
|
*/
|
|
if(gain > 0.0001f)
|
|
{
|
|
ALfloat c;
|
|
|
|
i = 0;
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
|
|
for(i = 1;i < Hrtf->irSize;i++)
|
|
{
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < Hrtf->irSize;i++)
|
|
{
|
|
coeffs[i][0] = 0.0f;
|
|
coeffs[i][1] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ALuint BuildBFormatHrtf(const struct Hrtf *Hrtf, ALfloat (*coeffs)[HRIR_LENGTH][2], ALuint NumChannels)
|
|
{
|
|
static const struct {
|
|
ALfloat elevation;
|
|
ALfloat azimuth;
|
|
} CubePoints[8] = {
|
|
{ DEG2RAD( 35.0f), DEG2RAD( -45.0f) },
|
|
{ DEG2RAD( 35.0f), DEG2RAD( 45.0f) },
|
|
{ DEG2RAD( 35.0f), DEG2RAD(-135.0f) },
|
|
{ DEG2RAD( 35.0f), DEG2RAD( 135.0f) },
|
|
{ DEG2RAD(-35.0f), DEG2RAD( -45.0f) },
|
|
{ DEG2RAD(-35.0f), DEG2RAD( 45.0f) },
|
|
{ DEG2RAD(-35.0f), DEG2RAD(-135.0f) },
|
|
{ DEG2RAD(-35.0f), DEG2RAD( 135.0f) },
|
|
};
|
|
static const ALfloat CubeMatrix[8][MAX_AMBI_COEFFS] = {
|
|
{ 0.25f, 0.14425f, 0.14425f, 0.14425f },
|
|
{ 0.25f, -0.14425f, 0.14425f, 0.14425f },
|
|
{ 0.25f, 0.14425f, 0.14425f, -0.14425f },
|
|
{ 0.25f, -0.14425f, 0.14425f, -0.14425f },
|
|
{ 0.25f, 0.14425f, -0.14425f, 0.14425f },
|
|
{ 0.25f, -0.14425f, -0.14425f, 0.14425f },
|
|
{ 0.25f, 0.14425f, -0.14425f, -0.14425f },
|
|
{ 0.25f, -0.14425f, -0.14425f, -0.14425f },
|
|
};
|
|
ALuint lidx[8], ridx[8];
|
|
ALuint min_delay = HRTF_HISTORY_LENGTH;
|
|
ALuint max_length = 0;
|
|
ALuint i, j, c;
|
|
|
|
assert(NumChannels == 4);
|
|
|
|
for(c = 0;c < 8;c++)
|
|
{
|
|
ALuint evidx[2];
|
|
ALuint evoffset;
|
|
ALuint azidx[2];
|
|
ALuint azcount;
|
|
ALfloat mu;
|
|
|
|
/* Calculate elevation index. */
|
|
CalcEvIndices(Hrtf->evCount, CubePoints[c].elevation, evidx, &mu);
|
|
if(mu >= 0.5f) evidx[0] = evidx[1];
|
|
|
|
azcount = Hrtf->azCount[evidx[0]];
|
|
evoffset = Hrtf->evOffset[evidx[0]];
|
|
|
|
/* Calculate azimuth index for this elevation. */
|
|
CalcAzIndices(azcount, CubePoints[c].azimuth, azidx, &mu);
|
|
if(mu >= 0.5f) azidx[0] = azidx[1];
|
|
|
|
/* Calculate indices for left and right channels. */
|
|
lidx[c] = evoffset + azidx[0];
|
|
ridx[c] = evoffset + ((azcount-azidx[0]) % azcount);
|
|
|
|
min_delay = minu(min_delay, minu(Hrtf->delays[lidx[c]], Hrtf->delays[ridx[c]]));
|
|
}
|
|
|
|
for(c = 0;c < 8;c++)
|
|
{
|
|
const ALshort *fir;
|
|
ALuint length;
|
|
ALuint delay;
|
|
|
|
fir = &Hrtf->coeffs[lidx[c] * Hrtf->irSize];
|
|
delay = Hrtf->delays[lidx[c]] - min_delay;
|
|
length = minu(delay + Hrtf->irSize, HRIR_LENGTH);
|
|
for(i = 0;i < NumChannels;++i)
|
|
{
|
|
ALuint k = 0;
|
|
for(j = delay;j < length;++j)
|
|
coeffs[i][j][0] += fir[k++]/32767.0f * CubeMatrix[c][i];
|
|
}
|
|
max_length = maxu(max_length, length);
|
|
|
|
fir = &Hrtf->coeffs[ridx[c] * Hrtf->irSize];
|
|
delay = Hrtf->delays[ridx[c]] - min_delay;
|
|
length = minu(delay + Hrtf->irSize, HRIR_LENGTH);
|
|
for(i = 0;i < NumChannels;++i)
|
|
{
|
|
ALuint k = 0;
|
|
for(j = delay;j < length;++j)
|
|
coeffs[i][j][1] += fir[k++]/32767.0f * CubeMatrix[c][i];
|
|
}
|
|
max_length = maxu(max_length, length);
|
|
}
|
|
TRACE("Skipped min delay: %u, new combined length: %u\n", min_delay, max_length);
|
|
|
|
return max_length;
|
|
}
|
|
|
|
|
|
static struct Hrtf *LoadHrtf00(FILE *f, const_al_string filename)
|
|
{
|
|
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
|
|
struct Hrtf *Hrtf = NULL;
|
|
ALboolean failed = AL_FALSE;
|
|
ALuint rate = 0, irCount = 0;
|
|
ALushort irSize = 0;
|
|
ALubyte evCount = 0;
|
|
ALubyte *azCount = NULL;
|
|
ALushort *evOffset = NULL;
|
|
ALshort *coeffs = NULL;
|
|
ALubyte *delays = NULL;
|
|
ALuint i, j;
|
|
|
|
rate = fgetc(f);
|
|
rate |= fgetc(f)<<8;
|
|
rate |= fgetc(f)<<16;
|
|
rate |= fgetc(f)<<24;
|
|
|
|
irCount = fgetc(f);
|
|
irCount |= fgetc(f)<<8;
|
|
|
|
irSize = fgetc(f);
|
|
irSize |= fgetc(f)<<8;
|
|
|
|
evCount = fgetc(f);
|
|
|
|
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
|
|
{
|
|
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
|
|
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(failed)
|
|
return NULL;
|
|
|
|
azCount = malloc(sizeof(azCount[0])*evCount);
|
|
evOffset = malloc(sizeof(evOffset[0])*evCount);
|
|
if(azCount == NULL || evOffset == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
evOffset[0] = fgetc(f);
|
|
evOffset[0] |= fgetc(f)<<8;
|
|
for(i = 1;i < evCount;i++)
|
|
{
|
|
evOffset[i] = fgetc(f);
|
|
evOffset[i] |= fgetc(f)<<8;
|
|
if(evOffset[i] <= evOffset[i-1])
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
|
|
i, evOffset[i], evOffset[i-1]);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
azCount[i-1] = evOffset[i] - evOffset[i-1];
|
|
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
if(irCount <= evOffset[i-1])
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
|
|
i-1, evOffset[i-1], irCount);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
azCount[i-1] = irCount - evOffset[i-1];
|
|
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
|
|
delays = malloc(sizeof(delays[0])*irCount);
|
|
if(coeffs == NULL || delays == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < irCount*irSize;i+=irSize)
|
|
{
|
|
for(j = 0;j < irSize;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = fgetc(f);
|
|
coeff |= fgetc(f)<<8;
|
|
coeffs[i+j] = coeff;
|
|
}
|
|
}
|
|
for(i = 0;i < irCount;i++)
|
|
{
|
|
delays[i] = fgetc(f);
|
|
if(delays[i] > maxDelay)
|
|
{
|
|
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(feof(f))
|
|
{
|
|
ERR("Premature end of data\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
size_t total = sizeof(struct Hrtf);
|
|
total += sizeof(azCount[0])*evCount;
|
|
total += sizeof(evOffset[0])*evCount;
|
|
total += sizeof(coeffs[0])*irSize*irCount;
|
|
total += sizeof(delays[0])*irCount;
|
|
total += al_string_length(filename)+1;
|
|
|
|
Hrtf = al_calloc(16, total);
|
|
if(Hrtf == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->evCount = evCount;
|
|
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
|
|
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
|
|
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
|
|
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
|
|
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
|
|
Hrtf->next = NULL;
|
|
|
|
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
|
|
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
|
|
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
|
|
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
|
|
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
|
|
}
|
|
|
|
free(azCount);
|
|
free(evOffset);
|
|
free(coeffs);
|
|
free(delays);
|
|
return Hrtf;
|
|
}
|
|
|
|
static struct Hrtf *LoadHrtf01(FILE *f, const_al_string filename)
|
|
{
|
|
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
|
|
struct Hrtf *Hrtf = NULL;
|
|
ALboolean failed = AL_FALSE;
|
|
ALuint rate = 0, irCount = 0;
|
|
ALubyte irSize = 0, evCount = 0;
|
|
ALubyte *azCount = NULL;
|
|
ALushort *evOffset = NULL;
|
|
ALshort *coeffs = NULL;
|
|
ALubyte *delays = NULL;
|
|
ALuint i, j;
|
|
|
|
rate = fgetc(f);
|
|
rate |= fgetc(f)<<8;
|
|
rate |= fgetc(f)<<16;
|
|
rate |= fgetc(f)<<24;
|
|
|
|
irSize = fgetc(f);
|
|
|
|
evCount = fgetc(f);
|
|
|
|
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
|
|
{
|
|
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
|
|
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(failed)
|
|
return NULL;
|
|
|
|
azCount = malloc(sizeof(azCount[0])*evCount);
|
|
evOffset = malloc(sizeof(evOffset[0])*evCount);
|
|
if(azCount == NULL || evOffset == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < evCount;i++)
|
|
{
|
|
azCount[i] = fgetc(f);
|
|
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
evOffset[0] = 0;
|
|
irCount = azCount[0];
|
|
for(i = 1;i < evCount;i++)
|
|
{
|
|
evOffset[i] = evOffset[i-1] + azCount[i-1];
|
|
irCount += azCount[i];
|
|
}
|
|
|
|
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
|
|
delays = malloc(sizeof(delays[0])*irCount);
|
|
if(coeffs == NULL || delays == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < irCount*irSize;i+=irSize)
|
|
{
|
|
for(j = 0;j < irSize;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = fgetc(f);
|
|
coeff |= fgetc(f)<<8;
|
|
coeffs[i+j] = coeff;
|
|
}
|
|
}
|
|
for(i = 0;i < irCount;i++)
|
|
{
|
|
delays[i] = fgetc(f);
|
|
if(delays[i] > maxDelay)
|
|
{
|
|
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(feof(f))
|
|
{
|
|
ERR("Premature end of data\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
size_t total = sizeof(struct Hrtf);
|
|
total += sizeof(azCount[0])*evCount;
|
|
total += sizeof(evOffset[0])*evCount;
|
|
total += sizeof(coeffs[0])*irSize*irCount;
|
|
total += sizeof(delays[0])*irCount;
|
|
total += al_string_length(filename)+1;
|
|
|
|
Hrtf = al_calloc(16, total);
|
|
if(Hrtf == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->evCount = evCount;
|
|
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
|
|
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
|
|
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
|
|
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
|
|
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
|
|
Hrtf->next = NULL;
|
|
|
|
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
|
|
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
|
|
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
|
|
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
|
|
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
|
|
}
|
|
|
|
free(azCount);
|
|
free(evOffset);
|
|
free(coeffs);
|
|
free(delays);
|
|
return Hrtf;
|
|
}
|
|
|
|
static void AddFileEntry(vector_HrtfEntry *list, al_string *filename)
|
|
{
|
|
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
|
|
struct Hrtf *hrtf = NULL;
|
|
const HrtfEntry *iter;
|
|
const char *name;
|
|
const char *ext;
|
|
ALchar magic[8];
|
|
FILE *f;
|
|
int i;
|
|
|
|
name = strrchr(al_string_get_cstr(*filename), '/');
|
|
if(!name) name = strrchr(al_string_get_cstr(*filename), '\\');
|
|
if(!name) name = al_string_get_cstr(*filename);
|
|
else ++name;
|
|
|
|
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
|
|
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
|
|
if(iter != VECTOR_END(*list))
|
|
{
|
|
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
|
|
goto done;
|
|
}
|
|
#undef MATCH_FNAME
|
|
|
|
entry.hrtf = LoadedHrtfs;
|
|
while(entry.hrtf)
|
|
{
|
|
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
|
|
{
|
|
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
|
|
goto skip_load;
|
|
}
|
|
entry.hrtf = entry.hrtf->next;
|
|
}
|
|
|
|
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
|
|
f = al_fopen(al_string_get_cstr(*filename), "rb");
|
|
if(f == NULL)
|
|
{
|
|
ERR("Could not open %s\n", al_string_get_cstr(*filename));
|
|
goto done;
|
|
}
|
|
|
|
if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
|
|
ERR("Failed to read header from %s\n", al_string_get_cstr(*filename));
|
|
else
|
|
{
|
|
if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
|
|
{
|
|
TRACE("Detected data set format v0\n");
|
|
hrtf = LoadHrtf00(f, *filename);
|
|
}
|
|
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
|
|
{
|
|
TRACE("Detected data set format v1\n");
|
|
hrtf = LoadHrtf01(f, *filename);
|
|
}
|
|
else
|
|
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), magic);
|
|
}
|
|
fclose(f);
|
|
|
|
if(!hrtf)
|
|
{
|
|
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
|
|
goto done;
|
|
}
|
|
|
|
hrtf->next = LoadedHrtfs;
|
|
LoadedHrtfs = hrtf;
|
|
TRACE("Loaded HRTF support for format: %s %uhz\n",
|
|
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
|
|
entry.hrtf = hrtf;
|
|
|
|
skip_load:
|
|
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
|
|
* format update). */
|
|
ext = strrchr(name, '.');
|
|
|
|
i = 0;
|
|
do {
|
|
if(!ext)
|
|
al_string_copy_cstr(&entry.name, name);
|
|
else
|
|
al_string_copy_range(&entry.name, name, ext);
|
|
if(i != 0)
|
|
{
|
|
char str[64];
|
|
snprintf(str, sizeof(str), " #%d", i+1);
|
|
al_string_append_cstr(&entry.name, str);
|
|
}
|
|
++i;
|
|
|
|
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
|
|
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
|
|
#undef MATCH_NAME
|
|
} while(iter != VECTOR_END(*list));
|
|
|
|
TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name),
|
|
al_string_get_cstr(*filename));
|
|
VECTOR_PUSH_BACK(*list, entry);
|
|
|
|
done:
|
|
al_string_deinit(filename);
|
|
}
|
|
|
|
|
|
/* Unfortunate that we have to duplicate LoadHrtf01 like this, to take a memory
|
|
* buffer for input instead of a FILE*, but there's no portable way to access a
|
|
* memory buffer through the standard FILE* I/O API (POSIX 2008 has fmemopen,
|
|
* and Windows doesn't seem to have anything).
|
|
*/
|
|
static struct Hrtf *LoadBuiltInHrtf01(const ALubyte *data, size_t datalen, const_al_string filename)
|
|
{
|
|
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
|
|
struct Hrtf *Hrtf = NULL;
|
|
ALboolean failed = AL_FALSE;
|
|
ALuint rate = 0, irCount = 0;
|
|
ALubyte irSize = 0, evCount = 0;
|
|
const ALubyte *azCount = NULL;
|
|
ALushort *evOffset = NULL;
|
|
ALshort *coeffs = NULL;
|
|
const ALubyte *delays = NULL;
|
|
ALuint i, j;
|
|
|
|
if(datalen < 6)
|
|
{
|
|
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
|
|
al_string_get_cstr(filename), 6, datalen);
|
|
return NULL;
|
|
}
|
|
|
|
rate = *(data++);
|
|
rate |= *(data++)<<8;
|
|
rate |= *(data++)<<16;
|
|
rate |= *(data++)<<24;
|
|
datalen -= 4;
|
|
|
|
irSize = *(data++);
|
|
datalen -= 1;
|
|
|
|
evCount = *(data++);
|
|
datalen -= 1;
|
|
|
|
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
|
|
{
|
|
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
|
|
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(failed)
|
|
return NULL;
|
|
|
|
if(datalen < evCount)
|
|
{
|
|
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
|
|
al_string_get_cstr(filename), evCount, datalen);
|
|
return NULL;
|
|
}
|
|
|
|
azCount = data;
|
|
data += evCount;
|
|
datalen -= evCount;
|
|
|
|
evOffset = malloc(sizeof(evOffset[0])*evCount);
|
|
if(azCount == NULL || evOffset == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < evCount;i++)
|
|
{
|
|
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
evOffset[0] = 0;
|
|
irCount = azCount[0];
|
|
for(i = 1;i < evCount;i++)
|
|
{
|
|
evOffset[i] = evOffset[i-1] + azCount[i-1];
|
|
irCount += azCount[i];
|
|
}
|
|
|
|
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
|
|
if(coeffs == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
size_t reqsize = 2*irSize*irCount + irCount;
|
|
if(datalen < reqsize)
|
|
{
|
|
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
|
|
al_string_get_cstr(filename), reqsize, datalen);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < irCount*irSize;i+=irSize)
|
|
{
|
|
for(j = 0;j < irSize;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = *(data++);
|
|
coeff |= *(data++)<<8;
|
|
datalen -= 2;
|
|
coeffs[i+j] = coeff;
|
|
}
|
|
}
|
|
|
|
delays = data;
|
|
data += irCount;
|
|
datalen -= irCount;
|
|
for(i = 0;i < irCount;i++)
|
|
{
|
|
if(delays[i] > maxDelay)
|
|
{
|
|
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
size_t total = sizeof(struct Hrtf);
|
|
total += sizeof(azCount[0])*evCount;
|
|
total += sizeof(evOffset[0])*evCount;
|
|
total += sizeof(coeffs[0])*irSize*irCount;
|
|
total += sizeof(delays[0])*irCount;
|
|
total += al_string_length(filename)+1;
|
|
|
|
Hrtf = al_calloc(16, total);
|
|
if(Hrtf == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->evCount = evCount;
|
|
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
|
|
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
|
|
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
|
|
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
|
|
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
|
|
Hrtf->next = NULL;
|
|
|
|
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
|
|
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
|
|
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
|
|
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
|
|
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
|
|
}
|
|
|
|
free(evOffset);
|
|
free(coeffs);
|
|
return Hrtf;
|
|
}
|
|
|
|
/* Another unfortunate duplication, this time of AddFileEntry to take a memory
|
|
* buffer for input instead of opening the given filename.
|
|
*/
|
|
static void AddBuiltInEntry(vector_HrtfEntry *list, const ALubyte *data, size_t datalen, al_string *filename)
|
|
{
|
|
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
|
|
struct Hrtf *hrtf = NULL;
|
|
const HrtfEntry *iter;
|
|
int i;
|
|
|
|
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
|
|
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
|
|
if(iter != VECTOR_END(*list))
|
|
{
|
|
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
|
|
goto done;
|
|
}
|
|
#undef MATCH_FNAME
|
|
|
|
entry.hrtf = LoadedHrtfs;
|
|
while(entry.hrtf)
|
|
{
|
|
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
|
|
{
|
|
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
|
|
goto skip_load;
|
|
}
|
|
entry.hrtf = entry.hrtf->next;
|
|
}
|
|
|
|
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
|
|
if(datalen < sizeof(magicMarker01))
|
|
{
|
|
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), datalen);
|
|
goto done;
|
|
}
|
|
|
|
if(memcmp(data, magicMarker01, sizeof(magicMarker01)) == 0)
|
|
{
|
|
TRACE("Detected data set format v1\n");
|
|
hrtf = LoadBuiltInHrtf01(
|
|
data+sizeof(magicMarker01), datalen-sizeof(magicMarker01),
|
|
*filename
|
|
);
|
|
}
|
|
else
|
|
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), data);
|
|
|
|
if(!hrtf)
|
|
{
|
|
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
|
|
goto done;
|
|
}
|
|
|
|
hrtf->next = LoadedHrtfs;
|
|
LoadedHrtfs = hrtf;
|
|
TRACE("Loaded HRTF support for format: %s %uhz\n",
|
|
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
|
|
entry.hrtf = hrtf;
|
|
|
|
skip_load:
|
|
i = 0;
|
|
do {
|
|
al_string_copy(&entry.name, *filename);
|
|
if(i != 0)
|
|
{
|
|
char str[64];
|
|
snprintf(str, sizeof(str), " #%d", i+1);
|
|
al_string_append_cstr(&entry.name, str);
|
|
}
|
|
++i;
|
|
|
|
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
|
|
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
|
|
#undef MATCH_NAME
|
|
} while(iter != VECTOR_END(*list));
|
|
|
|
TRACE("Adding built-in entry \"%s\"\n", al_string_get_cstr(entry.name));
|
|
VECTOR_PUSH_BACK(*list, entry);
|
|
|
|
done:
|
|
al_string_deinit(filename);
|
|
}
|
|
|
|
|
|
#ifndef ALSOFT_EMBED_HRTF_DATA
|
|
#define IDR_DEFAULT_44100_MHR 0
|
|
#define IDR_DEFAULT_48000_MHR 1
|
|
|
|
static const ALubyte *GetResource(int UNUSED(name), size_t *size)
|
|
{
|
|
*size = 0;
|
|
return NULL;
|
|
}
|
|
|
|
#else
|
|
#include "hrtf_res.h"
|
|
|
|
#ifdef _WIN32
|
|
static const ALubyte *GetResource(int name, size_t *size)
|
|
{
|
|
HMODULE handle;
|
|
HGLOBAL res;
|
|
HRSRC rc;
|
|
|
|
GetModuleHandleExW(
|
|
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
|
|
(LPCWSTR)GetResource, &handle
|
|
);
|
|
rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE));
|
|
res = LoadResource(handle, rc);
|
|
|
|
*size = SizeofResource(handle, rc);
|
|
return LockResource(res);
|
|
}
|
|
|
|
#else
|
|
|
|
extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL;
|
|
extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL;
|
|
extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL;
|
|
|
|
extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL;
|
|
extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL;
|
|
extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL;
|
|
|
|
static const ALubyte *GetResource(int name, size_t *size)
|
|
{
|
|
if(name == IDR_DEFAULT_44100_MHR)
|
|
{
|
|
/* Make sure all symbols are referenced, to ensure the compiler won't
|
|
* ignore the declarations and lose the visibility attribute used to
|
|
* hide them (would be nice if ld or objcopy could automatically mark
|
|
* them as hidden when generating them, but apparently they can't).
|
|
*/
|
|
const void *volatile ptr =_binary_default_44100_mhr_size;
|
|
(void)ptr;
|
|
*size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start;
|
|
return _binary_default_44100_mhr_start;
|
|
}
|
|
if(name == IDR_DEFAULT_48000_MHR)
|
|
{
|
|
const void *volatile ptr =_binary_default_48000_mhr_size;
|
|
(void)ptr;
|
|
*size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start;
|
|
return _binary_default_48000_mhr_start;
|
|
}
|
|
*size = 0;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
vector_HrtfEntry EnumerateHrtf(const_al_string devname)
|
|
{
|
|
vector_HrtfEntry list = VECTOR_INIT_STATIC();
|
|
const char *defaulthrtf = "";
|
|
const char *pathlist = "";
|
|
bool usedefaults = true;
|
|
|
|
if(ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf-paths", &pathlist))
|
|
{
|
|
while(pathlist && *pathlist)
|
|
{
|
|
const char *next, *end;
|
|
|
|
while(isspace(*pathlist) || *pathlist == ',')
|
|
pathlist++;
|
|
if(*pathlist == '\0')
|
|
continue;
|
|
|
|
next = strchr(pathlist, ',');
|
|
if(next)
|
|
end = next++;
|
|
else
|
|
{
|
|
end = pathlist + strlen(pathlist);
|
|
usedefaults = false;
|
|
}
|
|
|
|
while(end != pathlist && isspace(*(end-1)))
|
|
--end;
|
|
if(end != pathlist)
|
|
{
|
|
al_string pname = AL_STRING_INIT_STATIC();
|
|
vector_al_string flist;
|
|
|
|
al_string_append_range(&pname, pathlist, end);
|
|
|
|
flist = SearchDataFiles(".mhr", al_string_get_cstr(pname));
|
|
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
|
|
VECTOR_DEINIT(flist);
|
|
|
|
al_string_deinit(&pname);
|
|
}
|
|
|
|
pathlist = next;
|
|
}
|
|
}
|
|
else if(ConfigValueExists(al_string_get_cstr(devname), NULL, "hrtf_tables"))
|
|
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
|
|
|
|
if(usedefaults)
|
|
{
|
|
vector_al_string flist;
|
|
const ALubyte *rdata;
|
|
size_t rsize;
|
|
|
|
flist = SearchDataFiles(".mhr", "openal/hrtf");
|
|
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
|
|
VECTOR_DEINIT(flist);
|
|
|
|
rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize);
|
|
if(rdata != NULL && rsize > 0)
|
|
{
|
|
al_string ename = AL_STRING_INIT_STATIC();
|
|
al_string_copy_cstr(&ename, "Built-In 44100hz");
|
|
AddBuiltInEntry(&list, rdata, rsize, &ename);
|
|
}
|
|
|
|
rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize);
|
|
if(rdata != NULL && rsize > 0)
|
|
{
|
|
al_string ename = AL_STRING_INIT_STATIC();
|
|
al_string_copy_cstr(&ename, "Built-In 48000hz");
|
|
AddBuiltInEntry(&list, rdata, rsize, &ename);
|
|
}
|
|
}
|
|
|
|
if(VECTOR_SIZE(list) > 1 && ConfigValueStr(al_string_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf))
|
|
{
|
|
const HrtfEntry *iter;
|
|
/* Find the preferred HRTF and move it to the front of the list. */
|
|
#define FIND_ENTRY(i) (al_string_cmp_cstr((i)->name, defaulthrtf) == 0)
|
|
VECTOR_FIND_IF(iter, const HrtfEntry, list, FIND_ENTRY);
|
|
if(iter != VECTOR_END(list) && iter != VECTOR_BEGIN(list))
|
|
{
|
|
HrtfEntry entry = *iter;
|
|
memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0),
|
|
(iter-VECTOR_BEGIN(list))*sizeof(HrtfEntry));
|
|
VECTOR_ELEM(list,0) = entry;
|
|
}
|
|
else
|
|
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
|
|
#undef FIND_ENTRY
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
void FreeHrtfList(vector_HrtfEntry *list)
|
|
{
|
|
#define CLEAR_ENTRY(i) do { \
|
|
al_string_deinit(&(i)->name); \
|
|
} while(0)
|
|
VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY);
|
|
VECTOR_DEINIT(*list);
|
|
#undef CLEAR_ENTRY
|
|
}
|
|
|
|
|
|
void FreeHrtfs(void)
|
|
{
|
|
struct Hrtf *Hrtf = LoadedHrtfs;
|
|
LoadedHrtfs = NULL;
|
|
|
|
while(Hrtf != NULL)
|
|
{
|
|
struct Hrtf *next = Hrtf->next;
|
|
al_free(Hrtf);
|
|
Hrtf = next;
|
|
}
|
|
}
|