130 lines
4.5 KiB
C

#include "config.h"
#include "AL/alc.h"
#include "AL/al.h"
#include "alMain.h"
#include "defs.h"
extern inline void BiquadFilter_clear(BiquadFilter *filter);
extern inline void BiquadFilter_copyParams(BiquadFilter *restrict dst, const BiquadFilter *restrict src);
extern inline void BiquadFilter_passthru(BiquadFilter *filter, ALsizei numsamples);
extern inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope);
extern inline ALfloat calc_rcpQ_from_bandwidth(ALfloat f0norm, ALfloat bandwidth);
void BiquadFilter_setParams(BiquadFilter *filter, BiquadType type, ALfloat gain, ALfloat f0norm, ALfloat rcpQ)
{
ALfloat alpha, sqrtgain_alpha_2;
ALfloat w0, sin_w0, cos_w0;
ALfloat a[3] = { 1.0f, 0.0f, 0.0f };
ALfloat b[3] = { 1.0f, 0.0f, 0.0f };
// Limit gain to -100dB
assert(gain > 0.00001f);
w0 = F_TAU * f0norm;
sin_w0 = sinf(w0);
cos_w0 = cosf(w0);
alpha = sin_w0/2.0f * rcpQ;
/* Calculate filter coefficients depending on filter type */
switch(type)
{
case BiquadType_HighShelf:
sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha;
b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 );
b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 );
a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
break;
case BiquadType_LowShelf:
sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha;
b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 );
b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 );
a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
break;
case BiquadType_Peaking:
gain = sqrtf(gain);
b[0] = 1.0f + alpha * gain;
b[1] = -2.0f * cos_w0;
b[2] = 1.0f - alpha * gain;
a[0] = 1.0f + alpha / gain;
a[1] = -2.0f * cos_w0;
a[2] = 1.0f - alpha / gain;
break;
case BiquadType_LowPass:
b[0] = (1.0f - cos_w0) / 2.0f;
b[1] = 1.0f - cos_w0;
b[2] = (1.0f - cos_w0) / 2.0f;
a[0] = 1.0f + alpha;
a[1] = -2.0f * cos_w0;
a[2] = 1.0f - alpha;
break;
case BiquadType_HighPass:
b[0] = (1.0f + cos_w0) / 2.0f;
b[1] = -(1.0f + cos_w0);
b[2] = (1.0f + cos_w0) / 2.0f;
a[0] = 1.0f + alpha;
a[1] = -2.0f * cos_w0;
a[2] = 1.0f - alpha;
break;
case BiquadType_BandPass:
b[0] = alpha;
b[1] = 0;
b[2] = -alpha;
a[0] = 1.0f + alpha;
a[1] = -2.0f * cos_w0;
a[2] = 1.0f - alpha;
break;
}
filter->a1 = a[1] / a[0];
filter->a2 = a[2] / a[0];
filter->b0 = b[0] / a[0];
filter->b1 = b[1] / a[0];
filter->b2 = b[2] / a[0];
}
void BiquadFilter_processC(BiquadFilter *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples)
{
const ALfloat a1 = filter->a1;
const ALfloat a2 = filter->a2;
const ALfloat b0 = filter->b0;
const ALfloat b1 = filter->b1;
const ALfloat b2 = filter->b2;
ALfloat z1 = filter->z1;
ALfloat z2 = filter->z2;
ALsizei i;
ASSUME(numsamples > 0);
/* Processing loop is Transposed Direct Form II. This requires less storage
* compared to Direct Form I (only two delay components, instead of a four-
* sample history; the last two inputs and outputs), and works better for
* floating-point which favors summing similarly-sized values while being
* less bothered by overflow.
*
* See: http://www.earlevel.com/main/2003/02/28/biquads/
*/
for(i = 0;i < numsamples;i++)
{
ALfloat input = src[i];
ALfloat output = input*b0 + z1;
z1 = input*b1 - output*a1 + z2;
z2 = input*b2 - output*a2;
dst[i] = output;
}
filter->z1 = z1;
filter->z2 = z2;
}