130 lines
4.5 KiB
C
130 lines
4.5 KiB
C
|
|
#include "config.h"
|
|
|
|
#include "AL/alc.h"
|
|
#include "AL/al.h"
|
|
|
|
#include "alMain.h"
|
|
#include "defs.h"
|
|
|
|
extern inline void BiquadFilter_clear(BiquadFilter *filter);
|
|
extern inline void BiquadFilter_copyParams(BiquadFilter *restrict dst, const BiquadFilter *restrict src);
|
|
extern inline void BiquadFilter_passthru(BiquadFilter *filter, ALsizei numsamples);
|
|
extern inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope);
|
|
extern inline ALfloat calc_rcpQ_from_bandwidth(ALfloat f0norm, ALfloat bandwidth);
|
|
|
|
|
|
void BiquadFilter_setParams(BiquadFilter *filter, BiquadType type, ALfloat gain, ALfloat f0norm, ALfloat rcpQ)
|
|
{
|
|
ALfloat alpha, sqrtgain_alpha_2;
|
|
ALfloat w0, sin_w0, cos_w0;
|
|
ALfloat a[3] = { 1.0f, 0.0f, 0.0f };
|
|
ALfloat b[3] = { 1.0f, 0.0f, 0.0f };
|
|
|
|
// Limit gain to -100dB
|
|
assert(gain > 0.00001f);
|
|
|
|
w0 = F_TAU * f0norm;
|
|
sin_w0 = sinf(w0);
|
|
cos_w0 = cosf(w0);
|
|
alpha = sin_w0/2.0f * rcpQ;
|
|
|
|
/* Calculate filter coefficients depending on filter type */
|
|
switch(type)
|
|
{
|
|
case BiquadType_HighShelf:
|
|
sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha;
|
|
b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
|
|
b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 );
|
|
b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
|
|
a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
|
|
a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 );
|
|
a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
|
|
break;
|
|
case BiquadType_LowShelf:
|
|
sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha;
|
|
b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
|
|
b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 );
|
|
b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
|
|
a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
|
|
a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 );
|
|
a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
|
|
break;
|
|
case BiquadType_Peaking:
|
|
gain = sqrtf(gain);
|
|
b[0] = 1.0f + alpha * gain;
|
|
b[1] = -2.0f * cos_w0;
|
|
b[2] = 1.0f - alpha * gain;
|
|
a[0] = 1.0f + alpha / gain;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha / gain;
|
|
break;
|
|
|
|
case BiquadType_LowPass:
|
|
b[0] = (1.0f - cos_w0) / 2.0f;
|
|
b[1] = 1.0f - cos_w0;
|
|
b[2] = (1.0f - cos_w0) / 2.0f;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
case BiquadType_HighPass:
|
|
b[0] = (1.0f + cos_w0) / 2.0f;
|
|
b[1] = -(1.0f + cos_w0);
|
|
b[2] = (1.0f + cos_w0) / 2.0f;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
case BiquadType_BandPass:
|
|
b[0] = alpha;
|
|
b[1] = 0;
|
|
b[2] = -alpha;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
}
|
|
|
|
filter->a1 = a[1] / a[0];
|
|
filter->a2 = a[2] / a[0];
|
|
filter->b0 = b[0] / a[0];
|
|
filter->b1 = b[1] / a[0];
|
|
filter->b2 = b[2] / a[0];
|
|
}
|
|
|
|
|
|
void BiquadFilter_processC(BiquadFilter *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples)
|
|
{
|
|
const ALfloat a1 = filter->a1;
|
|
const ALfloat a2 = filter->a2;
|
|
const ALfloat b0 = filter->b0;
|
|
const ALfloat b1 = filter->b1;
|
|
const ALfloat b2 = filter->b2;
|
|
ALfloat z1 = filter->z1;
|
|
ALfloat z2 = filter->z2;
|
|
ALsizei i;
|
|
|
|
ASSUME(numsamples > 0);
|
|
|
|
/* Processing loop is Transposed Direct Form II. This requires less storage
|
|
* compared to Direct Form I (only two delay components, instead of a four-
|
|
* sample history; the last two inputs and outputs), and works better for
|
|
* floating-point which favors summing similarly-sized values while being
|
|
* less bothered by overflow.
|
|
*
|
|
* See: http://www.earlevel.com/main/2003/02/28/biquads/
|
|
*/
|
|
for(i = 0;i < numsamples;i++)
|
|
{
|
|
ALfloat input = src[i];
|
|
ALfloat output = input*b0 + z1;
|
|
z1 = input*b1 - output*a1 + z2;
|
|
z2 = input*b2 - output*a2;
|
|
dst[i] = output;
|
|
}
|
|
|
|
filter->z1 = z1;
|
|
filter->z2 = z2;
|
|
}
|