797 lines
30 KiB
C
797 lines
30 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2010 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bool.h"
|
|
#include "ambdec.h"
|
|
#include "bformatdec.h"
|
|
|
|
|
|
extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat coeffs[MAX_AMBI_COEFFS]);
|
|
|
|
|
|
#define ZERO_ORDER_SCALE 0.0f
|
|
#define FIRST_ORDER_SCALE 1.0f
|
|
#define SECOND_ORDER_SCALE (1.0f / 1.22474f)
|
|
#define THIRD_ORDER_SCALE (1.0f / 1.30657f)
|
|
|
|
|
|
static const ALuint FuMa2ACN[MAX_AMBI_COEFFS] = {
|
|
0, /* W */
|
|
3, /* X */
|
|
1, /* Y */
|
|
2, /* Z */
|
|
6, /* R */
|
|
7, /* S */
|
|
5, /* T */
|
|
8, /* U */
|
|
4, /* V */
|
|
12, /* K */
|
|
13, /* L */
|
|
11, /* M */
|
|
14, /* N */
|
|
10, /* O */
|
|
15, /* P */
|
|
9, /* Q */
|
|
};
|
|
|
|
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
|
|
* coefficients should be divided by these values to get proper N3D scalings.
|
|
*/
|
|
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
|
|
};
|
|
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.000000000f, /* ACN 0 (W), sqrt(1) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
2.236067978f, /* ACN 4 (V), sqrt(5) */
|
|
2.236067978f, /* ACN 5 (T), sqrt(5) */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
2.236067978f, /* ACN 7 (S), sqrt(5) */
|
|
2.236067978f, /* ACN 8 (U), sqrt(5) */
|
|
2.645751311f, /* ACN 9 (Q), sqrt(7) */
|
|
2.645751311f, /* ACN 10 (O), sqrt(7) */
|
|
2.645751311f, /* ACN 11 (M), sqrt(7) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.645751311f, /* ACN 13 (L), sqrt(7) */
|
|
2.645751311f, /* ACN 14 (N), sqrt(7) */
|
|
2.645751311f, /* ACN 15 (P), sqrt(7) */
|
|
};
|
|
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.414213562f, /* ACN 0 (W), sqrt(2) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
|
|
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
|
|
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
|
|
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
|
|
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
|
|
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
|
|
};
|
|
|
|
|
|
void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat coeffs[MAX_AMBI_COEFFS])
|
|
{
|
|
/* Convert from OpenAL coords to Ambisonics. */
|
|
ALfloat x = -dir[2];
|
|
ALfloat y = -dir[0];
|
|
ALfloat z = dir[1];
|
|
|
|
/* Zeroth-order */
|
|
coeffs[0] = 1.0f; /* ACN 0 = 1 */
|
|
/* First-order */
|
|
coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
|
|
coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
|
|
coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
|
|
/* Second-order */
|
|
coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
|
|
coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
|
|
coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
|
|
coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
|
|
coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
|
|
/* Third-order */
|
|
coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
|
|
coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
|
|
coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
|
|
coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
|
|
coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
|
|
coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
|
|
coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
|
|
}
|
|
|
|
void CalcAngleCoeffs(ALfloat angle, ALfloat elevation, ALfloat coeffs[MAX_AMBI_COEFFS])
|
|
{
|
|
ALfloat dir[3] = {
|
|
sinf(angle) * cosf(elevation),
|
|
sinf(elevation),
|
|
-cosf(angle) * cosf(elevation)
|
|
};
|
|
CalcDirectionCoeffs(dir, coeffs);
|
|
}
|
|
|
|
|
|
void ComputeAmbientGains(const ChannelConfig *chancoeffs, ALuint numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALuint i;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
// The W coefficients are based on a mathematical average of the
|
|
// output. The square root of the base average provides for a more
|
|
// perceptual average volume, better suited to non-directional gains.
|
|
gains[i] = sqrtf(chancoeffs[i][0]) * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputePanningGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALuint i, j;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
float gain = 0.0f;
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
gain += chancoeffs[i][j]*coeffs[j];
|
|
gains[i] = gain * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
void ComputeFirstOrderGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALuint i, j;
|
|
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
float gain = 0.0f;
|
|
for(j = 0;j < 4;j++)
|
|
gain += chancoeffs[i][j] * mtx[j];
|
|
gains[i] = gain * ingain;
|
|
}
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
gains[i] = 0.0f;
|
|
}
|
|
|
|
|
|
DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel)
|
|
{
|
|
switch(channel)
|
|
{
|
|
case FrontLeft: return "front-left";
|
|
case FrontRight: return "front-right";
|
|
case FrontCenter: return "front-center";
|
|
case LFE: return "lfe";
|
|
case BackLeft: return "back-left";
|
|
case BackRight: return "back-right";
|
|
case BackCenter: return "back-center";
|
|
case SideLeft: return "side-left";
|
|
case SideRight: return "side-right";
|
|
|
|
case UpperFrontLeft: return "upper-front-left";
|
|
case UpperFrontRight: return "upper-front-right";
|
|
case UpperBackLeft: return "upper-back-left";
|
|
case UpperBackRight: return "upper-back-right";
|
|
case LowerFrontLeft: return "lower-front-left";
|
|
case LowerFrontRight: return "lower-front-right";
|
|
case LowerBackLeft: return "lower-back-left";
|
|
case LowerBackRight: return "lower-back-right";
|
|
|
|
case Aux0: return "aux-0";
|
|
case Aux1: return "aux-1";
|
|
case Aux2: return "aux-2";
|
|
case Aux3: return "aux-3";
|
|
case Aux4: return "aux-4";
|
|
case Aux5: return "aux-5";
|
|
case Aux6: return "aux-6";
|
|
case Aux7: return "aux-7";
|
|
case Aux8: return "aux-8";
|
|
|
|
case InvalidChannel: break;
|
|
}
|
|
return "(unknown)";
|
|
}
|
|
|
|
|
|
DECL_CONST static const char *GetChannelLayoutName(enum DevFmtChannels chans)
|
|
{
|
|
switch(chans)
|
|
{
|
|
case DevFmtMono: return "mono";
|
|
case DevFmtStereo: return "stereo";
|
|
case DevFmtQuad: return "quad";
|
|
case DevFmtX51: return "surround51";
|
|
case DevFmtX51Rear: return "surround51rear";
|
|
case DevFmtX61: return "surround61";
|
|
case DevFmtX71: return "surround71";
|
|
case DevFmtBFormat3D:
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct ChannelMap {
|
|
enum Channel ChanName;
|
|
ChannelConfig Config;
|
|
} ChannelMap;
|
|
|
|
static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs,
|
|
const ChannelMap *chanmap, size_t count, ALuint *outcount,
|
|
ALboolean isfuma)
|
|
{
|
|
size_t j, k;
|
|
ALuint i;
|
|
|
|
for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++)
|
|
{
|
|
if(devchans[i] == LFE)
|
|
{
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
ambicoeffs[i][j] = 0.0f;
|
|
continue;
|
|
}
|
|
|
|
for(j = 0;j < count;j++)
|
|
{
|
|
if(devchans[i] != chanmap[j].ChanName)
|
|
continue;
|
|
|
|
if(isfuma)
|
|
{
|
|
/* Reformat FuMa -> ACN/N3D */
|
|
for(k = 0;k < MAX_AMBI_COEFFS;++k)
|
|
{
|
|
ALuint acn = FuMa2ACN[k];
|
|
ambicoeffs[i][acn] = chanmap[j].Config[k] / FuMa2N3DScale[acn];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(k = 0;k < MAX_AMBI_COEFFS;++k)
|
|
ambicoeffs[i][k] = chanmap[j].Config[k];
|
|
}
|
|
break;
|
|
}
|
|
if(j == count)
|
|
ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i);
|
|
}
|
|
*outcount = i;
|
|
}
|
|
|
|
static bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, ALuint speakermap[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ALuint i;
|
|
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
{
|
|
int c = -1;
|
|
|
|
/* NOTE: AmbDec does not define any standard speaker names, however
|
|
* for this to work we have to by able to find the output channel
|
|
* the speaker definition corresponds to. Therefore, OpenAL Soft
|
|
* requires these channel labels to be recognized:
|
|
*
|
|
* LF = Front left
|
|
* RF = Front right
|
|
* LS = Side left
|
|
* RS = Side right
|
|
* LB = Back left
|
|
* RB = Back right
|
|
* CE = Front center
|
|
* CB = Back center
|
|
*
|
|
* Additionally, surround51 will acknowledge back speakers for side
|
|
* channels, and surround51rear will acknowledge side speakers for
|
|
* back channels, to avoid issues with an ambdec expecting 5.1 to
|
|
* use the side channels when the device is configured for back,
|
|
* and vice-versa.
|
|
*/
|
|
if(al_string_cmp_cstr(conf->Speakers[i].Name, "LF") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RF") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CE") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, FrontCenter);
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LS") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
c = GetChannelIdxByName(device->RealOut, BackLeft);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, SideLeft);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RS") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
c = GetChannelIdxByName(device->RealOut, BackRight);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, SideRight);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "LB") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
c = GetChannelIdxByName(device->RealOut, SideLeft);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, BackLeft);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "RB") == 0)
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
c = GetChannelIdxByName(device->RealOut, SideRight);
|
|
else
|
|
c = GetChannelIdxByName(device->RealOut, BackRight);
|
|
}
|
|
else if(al_string_cmp_cstr(conf->Speakers[i].Name, "CB") == 0)
|
|
c = GetChannelIdxByName(device->RealOut, BackCenter);
|
|
else
|
|
{
|
|
ERR("AmbDec speaker label \"%s\" not recognized\n",
|
|
al_string_get_cstr(conf->Speakers[i].Name));
|
|
return false;
|
|
}
|
|
if(c == -1)
|
|
{
|
|
ERR("Failed to lookup AmbDec speaker label %s\n",
|
|
al_string_get_cstr(conf->Speakers[i].Name));
|
|
return false;
|
|
}
|
|
speakermap[i] = c;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool LoadChannelSetup(ALCdevice *device)
|
|
{
|
|
ALuint speakermap[MAX_OUTPUT_CHANNELS];
|
|
const char *fname = "";
|
|
const char *devname;
|
|
const char *layout;
|
|
AmbDecConf conf;
|
|
ALuint i, j;
|
|
|
|
layout = GetChannelLayoutName(device->FmtChans);
|
|
if(!layout) return false;
|
|
|
|
devname = al_string_get_cstr(device->DeviceName);
|
|
if(!ConfigValueStr(devname, "decoder", layout, &fname))
|
|
return false;
|
|
|
|
ambdec_init(&conf);
|
|
if(!ambdec_load(&conf, fname))
|
|
{
|
|
ERR("Failed to load layout file %s\n", fname);
|
|
goto fail;
|
|
}
|
|
|
|
if(conf.ChanMask > 0xffff)
|
|
{
|
|
ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask);
|
|
goto fail;
|
|
}
|
|
|
|
if(!MakeSpeakerMap(device, &conf, speakermap))
|
|
goto fail;
|
|
|
|
if(device->AmbiDecoder && (conf.ChanMask & ~0x831b) && conf.ChanMask > 0x1ff)
|
|
{
|
|
ERR("Third-order is unsupported for periphonic HQ decoding (mask 0x%04x)\n",
|
|
conf.ChanMask);
|
|
bformatdec_free(device->AmbiDecoder);
|
|
device->AmbiDecoder = NULL;
|
|
}
|
|
|
|
if(device->AmbiDecoder)
|
|
{
|
|
/* NOTE: This is ACN/N3D ordering and scaling, rather than FuMa. */
|
|
static const ChannelMap Ambi3D[9] = {
|
|
/* Zeroth order */
|
|
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
/* First order */
|
|
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
/* Second order */
|
|
{ Aux4, { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux5, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux6, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f } },
|
|
{ Aux7, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f } },
|
|
{ Aux8, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f } },
|
|
}, Ambi2D[7] = {
|
|
/* Zeroth order */
|
|
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
/* First order */
|
|
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux2, { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
/* Second order */
|
|
{ Aux3, { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux4, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
/* Third order */
|
|
{ Aux5, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux6, { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f } },
|
|
};
|
|
const ChannelMap *chanmap = NULL;
|
|
const char *devname;
|
|
int decflags = 0;
|
|
size_t count;
|
|
|
|
if((conf.ChanMask & ~0x831b))
|
|
{
|
|
count = (conf.ChanMask > 0xf) ? (conf.ChanMask > 0x1ff) ? 16 : 9 : 4;
|
|
chanmap = Ambi3D;
|
|
}
|
|
else
|
|
{
|
|
count = (conf.ChanMask > 0xf) ? (conf.ChanMask > 0x1ff) ? 7 : 5 : 3;
|
|
chanmap = Ambi2D;
|
|
}
|
|
|
|
devname = al_string_get_cstr(device->DeviceName);
|
|
if(GetConfigValueBool(devname, "decoder", "distance-comp", 1))
|
|
decflags |= BFDF_DistanceComp;
|
|
|
|
for(i = 0;i < count;i++)
|
|
device->Dry.ChannelName[i] = chanmap[i].ChanName;
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
device->Dry.ChannelName[i] = InvalidChannel;
|
|
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
|
|
&device->Dry.NumChannels, AL_FALSE);
|
|
|
|
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
|
|
(conf.FreqBands == 1) ? "single" : "dual",
|
|
(conf.ChanMask > 0xf) ? (conf.ChanMask > 0x1ff) ? "third" : "second" : "first",
|
|
(conf.ChanMask & ~0x831b) ? " periphonic" : ""
|
|
);
|
|
bformatdec_reset(device->AmbiDecoder, &conf, count, device->Frequency,
|
|
speakermap, decflags);
|
|
|
|
if(bformatdec_getOrder(device->AmbiDecoder) < 2)
|
|
memcpy(device->FOAOut.AmbiCoeffs, device->Dry.AmbiCoeffs,
|
|
sizeof(device->FOAOut.AmbiCoeffs));
|
|
else
|
|
{
|
|
memset(device->FOAOut.AmbiCoeffs, 0, sizeof(device->FOAOut.AmbiCoeffs));
|
|
device->FOAOut.AmbiCoeffs[0][0] = 1.0f;
|
|
device->FOAOut.AmbiCoeffs[1][1] = 1.0f;
|
|
device->FOAOut.AmbiCoeffs[2][2] = 1.0f;
|
|
device->FOAOut.AmbiCoeffs[3][3] = 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
|
|
const ALfloat *coeff_scale = UnitScale;
|
|
ALfloat ambiscale = 1.0f;
|
|
|
|
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
|
|
device->Dry.ChannelName[i] = device->RealOut.ChannelName[i];
|
|
|
|
if(conf.FreqBands != 1)
|
|
ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
|
|
conf.XOverFreq);
|
|
|
|
if(conf.ChanMask > 0x1ff)
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
else if(conf.ChanMask > 0xf)
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
else if(conf.ChanMask > 0x1)
|
|
ambiscale = FIRST_ORDER_SCALE;
|
|
else
|
|
ambiscale = 0.0f;
|
|
|
|
if(conf.CoeffScale == ADS_SN3D)
|
|
coeff_scale = SN3D2N3DScale;
|
|
else if(conf.CoeffScale == ADS_FuMa)
|
|
coeff_scale = FuMa2N3DScale;
|
|
|
|
for(i = 0;i < conf.NumSpeakers;i++)
|
|
{
|
|
ALuint chan = speakermap[i];
|
|
ALfloat gain;
|
|
ALuint k = 0;
|
|
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
chanmap[i].Config[j] = 0.0f;
|
|
|
|
chanmap[i].ChanName = device->RealOut.ChannelName[chan];
|
|
for(j = 0;j < MAX_AMBI_COEFFS;j++)
|
|
{
|
|
if(j == 0) gain = conf.HFOrderGain[0];
|
|
else if(j == 1) gain = conf.HFOrderGain[1];
|
|
else if(j == 4) gain = conf.HFOrderGain[2];
|
|
else if(j == 9) gain = conf.HFOrderGain[3];
|
|
if((conf.ChanMask&(1<<j)))
|
|
chanmap[i].Config[j] = conf.HFMatrix[i][k++] / coeff_scale[j] * gain;
|
|
}
|
|
}
|
|
|
|
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap,
|
|
conf.NumSpeakers, &device->Dry.NumChannels, AL_FALSE);
|
|
|
|
memset(device->FOAOut.AmbiCoeffs, 0, sizeof(device->FOAOut.AmbiCoeffs));
|
|
for(i = 0;i < device->Dry.NumChannels;i++)
|
|
{
|
|
device->FOAOut.AmbiCoeffs[i][0] = device->Dry.AmbiCoeffs[i][0];
|
|
for(j = 1;j < 4;j++)
|
|
device->FOAOut.AmbiCoeffs[i][j] = device->Dry.AmbiCoeffs[i][j] * ambiscale;
|
|
}
|
|
}
|
|
|
|
ambdec_deinit(&conf);
|
|
return true;
|
|
|
|
fail:
|
|
ambdec_deinit(&conf);
|
|
return false;
|
|
}
|
|
|
|
|
|
/* NOTE: These decoder coefficients are using FuMa channel ordering and
|
|
* normalization, since that's what was produced by the Ambisonic Decoder
|
|
* Toolbox. SetChannelMap will convert them to N3D.
|
|
*/
|
|
static const ChannelMap MonoCfg[1] = {
|
|
{ FrontCenter, { 1.414213562f } },
|
|
}, StereoCfg[2] = {
|
|
{ FrontLeft, { 0.707106781f, 0.0f, 0.5f, 0.0f } },
|
|
{ FrontRight, { 0.707106781f, 0.0f, -0.5f, 0.0f } },
|
|
}, QuadCfg[4] = {
|
|
{ FrontLeft, { 0.353553f, 0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
|
|
{ FrontRight, { 0.353553f, 0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
|
|
{ BackLeft, { 0.353553f, -0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
|
|
{ BackRight, { 0.353553f, -0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
|
|
}, X51SideCfg[5] = {
|
|
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
|
|
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
|
|
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
|
|
{ SideLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
|
|
{ SideRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
|
|
}, X51RearCfg[5] = {
|
|
{ FrontLeft, { 0.208954f, 0.199518f, 0.223424f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012543f, 0.144260f } },
|
|
{ FrontRight, { 0.208950f, 0.199514f, -0.223425f, 0.0f, 0.0f, 0.0f, 0.0f, -0.012544f, -0.144258f } },
|
|
{ FrontCenter, { 0.109403f, 0.168250f, -0.000002f, 0.0f, 0.0f, 0.0f, 0.0f, 0.100431f, -0.000001f } },
|
|
{ BackLeft, { 0.470934f, -0.346484f, 0.327504f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022188f, -0.041113f } },
|
|
{ BackRight, { 0.470936f, -0.346480f, -0.327507f, 0.0f, 0.0f, 0.0f, 0.0f, -0.022186f, 0.041114f } },
|
|
}, X61Cfg[6] = {
|
|
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
|
|
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
|
|
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
|
|
{ BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } },
|
|
{ SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } },
|
|
{ SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } },
|
|
}, X71Cfg[7] = {
|
|
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
|
|
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
|
|
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
|
|
{ BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } },
|
|
{ BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } },
|
|
{ SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } },
|
|
{ SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } },
|
|
}, Cube8Cfg[8] = {
|
|
{ UpperFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, 0.072168784f } },
|
|
{ UpperFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, 0.072168784f } },
|
|
{ UpperBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, 0.072168784f } },
|
|
{ UpperBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, 0.072168784f } },
|
|
{ LowerFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, -0.072168784f } },
|
|
{ LowerFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, -0.072168784f } },
|
|
{ LowerBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, -0.072168784f } },
|
|
{ LowerBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, -0.072168784f } },
|
|
}, BFormat2D[3] = {
|
|
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
|
|
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
|
|
}, BFormat3D[4] = {
|
|
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
|
|
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
|
|
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
|
|
};
|
|
|
|
ALvoid aluInitPanning(ALCdevice *device)
|
|
{
|
|
const ChannelMap *chanmap = NULL;
|
|
ALfloat ambiscale;
|
|
size_t count = 0;
|
|
ALuint i, j;
|
|
|
|
memset(device->Dry.AmbiCoeffs, 0, sizeof(device->Dry.AmbiCoeffs));
|
|
device->Dry.NumChannels = 0;
|
|
|
|
/* Don't use custom decoders or HQ decoding with mono or stereo output.
|
|
* Mono only has one channel, and stereo doesn't have enough speakers to
|
|
* really be specified this way.
|
|
*/
|
|
if(device->FmtChans != DevFmtMono && device->FmtChans != DevFmtStereo)
|
|
{
|
|
if(LoadChannelSetup(device))
|
|
return;
|
|
}
|
|
|
|
bformatdec_free(device->AmbiDecoder);
|
|
device->AmbiDecoder = NULL;
|
|
|
|
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
|
|
device->Dry.ChannelName[i] = device->RealOut.ChannelName[i];
|
|
|
|
ambiscale = 1.0f;
|
|
switch(device->FmtChans)
|
|
{
|
|
case DevFmtMono:
|
|
count = COUNTOF(MonoCfg);
|
|
chanmap = MonoCfg;
|
|
ambiscale = ZERO_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtStereo:
|
|
count = COUNTOF(StereoCfg);
|
|
chanmap = StereoCfg;
|
|
ambiscale = FIRST_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtQuad:
|
|
count = COUNTOF(QuadCfg);
|
|
chanmap = QuadCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtX51:
|
|
count = COUNTOF(X51SideCfg);
|
|
chanmap = X51SideCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtX51Rear:
|
|
count = COUNTOF(X51RearCfg);
|
|
chanmap = X51RearCfg;
|
|
ambiscale = SECOND_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtX61:
|
|
count = COUNTOF(X61Cfg);
|
|
chanmap = X61Cfg;
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtX71:
|
|
count = COUNTOF(X71Cfg);
|
|
chanmap = X71Cfg;
|
|
ambiscale = THIRD_ORDER_SCALE;
|
|
break;
|
|
|
|
case DevFmtBFormat3D:
|
|
count = COUNTOF(BFormat3D);
|
|
chanmap = BFormat3D;
|
|
ambiscale = FIRST_ORDER_SCALE;
|
|
break;
|
|
}
|
|
|
|
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
|
|
&device->Dry.NumChannels, AL_TRUE);
|
|
|
|
memset(device->FOAOut.AmbiCoeffs, 0, sizeof(device->FOAOut.AmbiCoeffs));
|
|
for(i = 0;i < device->Dry.NumChannels;i++)
|
|
{
|
|
device->FOAOut.AmbiCoeffs[i][0] = device->Dry.AmbiCoeffs[i][0];
|
|
for(j = 1;j < 4;j++)
|
|
device->FOAOut.AmbiCoeffs[i][j] = device->Dry.AmbiCoeffs[i][j] * ambiscale;
|
|
}
|
|
}
|
|
|
|
ALvoid aluInitHrtfPanning(ALCdevice *device)
|
|
{
|
|
static const struct {
|
|
enum Channel Channel;
|
|
ALfloat Angle;
|
|
ALfloat Elevation;
|
|
} CubeInfo[8] = {
|
|
{ UpperFrontLeft, DEG2RAD( -45.0f), DEG2RAD( 45.0f) },
|
|
{ UpperFrontRight, DEG2RAD( 45.0f), DEG2RAD( 45.0f) },
|
|
{ UpperBackLeft, DEG2RAD(-135.0f), DEG2RAD( 45.0f) },
|
|
{ UpperBackRight, DEG2RAD( 135.0f), DEG2RAD( 45.0f) },
|
|
{ LowerFrontLeft, DEG2RAD( -45.0f), DEG2RAD(-45.0f) },
|
|
{ LowerFrontRight, DEG2RAD( 45.0f), DEG2RAD(-45.0f) },
|
|
{ LowerBackLeft, DEG2RAD(-135.0f), DEG2RAD(-45.0f) },
|
|
{ LowerBackRight, DEG2RAD( 135.0f), DEG2RAD(-45.0f) },
|
|
};
|
|
const ChannelMap *chanmap = Cube8Cfg;
|
|
size_t count = COUNTOF(Cube8Cfg);
|
|
ALuint i;
|
|
|
|
memset(device->Dry.AmbiCoeffs, 0, sizeof(device->Dry.AmbiCoeffs));
|
|
device->Dry.NumChannels = 0;
|
|
|
|
for(i = 0;i < count;i++)
|
|
device->Dry.ChannelName[i] = chanmap[i].ChanName;
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
device->Dry.ChannelName[i] = InvalidChannel;
|
|
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
|
|
&device->Dry.NumChannels, AL_TRUE);
|
|
|
|
memcpy(device->FOAOut.AmbiCoeffs, device->Dry.AmbiCoeffs,
|
|
sizeof(device->FOAOut.AmbiCoeffs));
|
|
|
|
for(i = 0;i < device->Dry.NumChannels;i++)
|
|
{
|
|
int chan = GetChannelIdxByName(device->Dry, CubeInfo[i].Channel);
|
|
GetLerpedHrtfCoeffs(device->Hrtf, CubeInfo[i].Elevation, CubeInfo[i].Angle, 1.0f, 1.0f,
|
|
device->Hrtf_Params[chan].Coeffs, device->Hrtf_Params[chan].Delay);
|
|
}
|
|
}
|
|
|
|
ALvoid aluInitUhjPanning(ALCdevice *device)
|
|
{
|
|
const ChannelMap *chanmap = BFormat2D;
|
|
size_t count = COUNTOF(BFormat2D);
|
|
ALuint i;
|
|
|
|
memset(device->Dry.AmbiCoeffs, 0, sizeof(device->Dry.AmbiCoeffs));
|
|
device->Dry.NumChannels = 0;
|
|
|
|
for(i = 0;i < count;i++)
|
|
device->Dry.ChannelName[i] = chanmap[i].ChanName;
|
|
for(;i < MAX_OUTPUT_CHANNELS;i++)
|
|
device->Dry.ChannelName[i] = InvalidChannel;
|
|
SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
|
|
&device->Dry.NumChannels, AL_TRUE);
|
|
|
|
memcpy(device->FOAOut.AmbiCoeffs, device->Dry.AmbiCoeffs,
|
|
sizeof(device->FOAOut.AmbiCoeffs));
|
|
}
|
|
|
|
void aluInitEffectPanning(ALeffectslot *slot)
|
|
{
|
|
static const ChannelMap FirstOrderN3D[4] = {
|
|
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
|
|
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
|
|
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
|
|
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
|
|
};
|
|
static const enum Channel AmbiChannels[MAX_OUTPUT_CHANNELS] = {
|
|
Aux0, Aux1, Aux2, Aux3, InvalidChannel
|
|
};
|
|
|
|
memset(slot->AmbiCoeffs, 0, sizeof(slot->AmbiCoeffs));
|
|
slot->NumChannels = 0;
|
|
|
|
SetChannelMap(AmbiChannels, slot->AmbiCoeffs, FirstOrderN3D, COUNTOF(FirstOrderN3D),
|
|
&slot->NumChannels, AL_FALSE);
|
|
}
|