openal-soft/alc/voice.h
2020-03-28 18:15:05 -07:00

273 lines
6.3 KiB
C++

#ifndef VOICE_H
#define VOICE_H
#include <array>
#include "AL/al.h"
#include "AL/alext.h"
#include "al/buffer.h"
#include "almalloc.h"
#include "alspan.h"
#include "alu.h"
#include "devformat.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "hrtf.h"
enum class DistanceModel;
enum SpatializeMode {
SpatializeOff = AL_FALSE,
SpatializeOn = AL_TRUE,
SpatializeAuto = AL_AUTO_SOFT
};
enum class DirectMode : unsigned char {
Off = AL_FALSE,
DropMismatch = AL_DROP_UNMATCHED_SOFT,
RemixMismatch = AL_REMIX_UNMATCHED_SOFT
};
enum class Resampler {
Point,
Linear,
Cubic,
FastBSinc12,
BSinc12,
FastBSinc24,
BSinc24,
Max = BSinc24
};
extern Resampler ResamplerDefault;
/* The number of distinct scale and phase intervals within the bsinc filter
* table.
*/
#define BSINC_SCALE_BITS 4
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
#define BSINC_PHASE_BITS 5
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)
/* Interpolator state. Kind of a misnomer since the interpolator itself is
* stateless. This just keeps it from having to recompute scale-related
* mappings for every sample.
*/
struct BsincState {
float sf; /* Scale interpolation factor. */
ALuint m; /* Coefficient count. */
ALuint l; /* Left coefficient offset. */
/* Filter coefficients, followed by the phase, scale, and scale-phase
* delta coefficients. Starting at phase index 0, each subsequent phase
* index follows contiguously.
*/
const float *filter;
};
union InterpState {
BsincState bsinc;
};
using ResamplerFunc = const float*(*)(const InterpState *state, const float *RESTRICT src,
ALuint frac, ALuint increment, const al::span<float> dst);
ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state);
enum {
AF_None = 0,
AF_LowPass = 1,
AF_HighPass = 2,
AF_BandPass = AF_LowPass | AF_HighPass
};
struct MixHrtfFilter {
const HrirArray *Coeffs;
std::array<ALuint,2> Delay;
float Gain;
float GainStep;
};
struct DirectParams {
BiquadFilter LowPass;
BiquadFilter HighPass;
NfcFilter NFCtrlFilter;
struct {
HrtfFilter Old;
HrtfFilter Target;
alignas(16) std::array<float,HRTF_HISTORY_LENGTH> History;
} Hrtf;
struct {
std::array<float,MAX_OUTPUT_CHANNELS> Current;
std::array<float,MAX_OUTPUT_CHANNELS> Target;
} Gains;
};
struct SendParams {
BiquadFilter LowPass;
BiquadFilter HighPass;
struct {
std::array<float,MAX_OUTPUT_CHANNELS> Current;
std::array<float,MAX_OUTPUT_CHANNELS> Target;
} Gains;
};
struct VoiceProps {
float Pitch;
float Gain;
float OuterGain;
float MinGain;
float MaxGain;
float InnerAngle;
float OuterAngle;
float RefDistance;
float MaxDistance;
float RolloffFactor;
std::array<float,3> Position;
std::array<float,3> Velocity;
std::array<float,3> Direction;
std::array<float,3> OrientAt;
std::array<float,3> OrientUp;
bool HeadRelative;
DistanceModel mDistanceModel;
Resampler mResampler;
DirectMode DirectChannels;
SpatializeMode mSpatializeMode;
bool DryGainHFAuto;
bool WetGainAuto;
bool WetGainHFAuto;
float OuterGainHF;
float AirAbsorptionFactor;
float RoomRolloffFactor;
float DopplerFactor;
std::array<float,2> StereoPan;
float Radius;
/** Direct filter and auxiliary send info. */
struct {
float Gain;
float GainHF;
float HFReference;
float GainLF;
float LFReference;
} Direct;
struct SendData {
ALeffectslot *Slot;
float Gain;
float GainHF;
float HFReference;
float GainLF;
float LFReference;
} Send[MAX_SENDS];
};
struct VoicePropsItem : public VoiceProps {
std::atomic<VoicePropsItem*> next{nullptr};
DEF_NEWDEL(VoicePropsItem)
};
#define VOICE_IS_STATIC (1u<<0)
#define VOICE_IS_CALLBACK (1u<<1)
#define VOICE_IS_AMBISONIC (1u<<2) /* Voice needs HF scaling for ambisonic upsampling. */
#define VOICE_CALLBACK_STOPPED (1u<<3)
#define VOICE_IS_FADING (1u<<4) /* Fading sources use gain stepping for smooth transitions. */
#define VOICE_HAS_HRTF (1u<<5)
#define VOICE_HAS_NFC (1u<<6)
#define VOICE_TYPE_MASK (VOICE_IS_STATIC | VOICE_IS_CALLBACK)
struct Voice {
enum State {
Stopped,
Playing,
Stopping,
Pending
};
std::atomic<VoicePropsItem*> mUpdate{nullptr};
VoiceProps mProps;
std::atomic<ALuint> mSourceID{0u};
std::atomic<State> mPlayState{Stopped};
std::atomic<bool> mPendingChange{false};
/**
* Source offset in samples, relative to the currently playing buffer, NOT
* the whole queue.
*/
std::atomic<ALuint> mPosition;
/** Fractional (fixed-point) offset to the next sample. */
std::atomic<ALuint> mPositionFrac;
/* Current buffer queue item being played. */
std::atomic<ALbufferlistitem*> mCurrentBuffer;
/* Buffer queue item to loop to at end of queue (will be NULL for non-
* looping voices).
*/
std::atomic<ALbufferlistitem*> mLoopBuffer;
/* Properties for the attached buffer(s). */
FmtChannels mFmtChannels;
ALuint mFrequency;
ALuint mSampleSize;
AmbiLayout mAmbiLayout;
AmbiNorm mAmbiScaling;
ALuint mAmbiOrder;
/** Current target parameters used for mixing. */
ALuint mStep{0};
ResamplerFunc mResampler;
InterpState mResampleState;
ALuint mFlags{};
ALuint mNumCallbackSamples{0};
struct TargetData {
int FilterType;
al::span<FloatBufferLine> Buffer;
};
TargetData mDirect;
std::array<TargetData,MAX_SENDS> mSend;
struct ChannelData {
alignas(16) std::array<float,MAX_RESAMPLER_PADDING> mPrevSamples;
float mAmbiScale;
BandSplitter mAmbiSplitter;
DirectParams mDryParams;
std::array<SendParams,MAX_SENDS> mWetParams;
};
al::vector<ChannelData> mChans{2};
Voice() = default;
Voice(const Voice&) = delete;
~Voice() { delete mUpdate.exchange(nullptr, std::memory_order_acq_rel); }
Voice& operator=(const Voice&) = delete;
void mix(const State vstate, ALCcontext *Context, const ALuint SamplesToDo);
DEF_NEWDEL(Voice)
};
#endif /* VOICE_H */