119 lines
3.6 KiB
C++
119 lines
3.6 KiB
C++
#ifndef COMMON_VECMAT_H
|
|
#define COMMON_VECMAT_H
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
|
|
#include "alspan.h"
|
|
|
|
|
|
namespace alu {
|
|
|
|
template<typename T>
|
|
class VectorR {
|
|
static_assert(std::is_floating_point<T>::value, "Must use floating-point types");
|
|
alignas(16) std::array<T,4> mVals;
|
|
|
|
public:
|
|
constexpr VectorR() noexcept = default;
|
|
constexpr VectorR(const VectorR&) noexcept = default;
|
|
constexpr VectorR(T a, T b, T c, T d) noexcept : mVals{{a, b, c, d}} { }
|
|
|
|
constexpr VectorR& operator=(const VectorR&) noexcept = default;
|
|
|
|
T& operator[](size_t idx) noexcept { return mVals[idx]; }
|
|
constexpr const T& operator[](size_t idx) const noexcept { return mVals[idx]; }
|
|
|
|
VectorR& operator+=(const VectorR &rhs) noexcept
|
|
{
|
|
mVals[0] += rhs.mVals[0];
|
|
mVals[1] += rhs.mVals[1];
|
|
mVals[2] += rhs.mVals[2];
|
|
mVals[3] += rhs.mVals[3];
|
|
return *this;
|
|
}
|
|
|
|
T normalize()
|
|
{
|
|
const T length{std::sqrt(mVals[0]*mVals[0] + mVals[1]*mVals[1] + mVals[2]*mVals[2])};
|
|
if(length > std::numeric_limits<T>::epsilon())
|
|
{
|
|
T inv_length{T{1}/length};
|
|
mVals[0] *= inv_length;
|
|
mVals[1] *= inv_length;
|
|
mVals[2] *= inv_length;
|
|
return length;
|
|
}
|
|
mVals[0] = mVals[1] = mVals[2] = T{0};
|
|
return T{0};
|
|
}
|
|
|
|
constexpr VectorR cross_product(const alu::VectorR<T> &rhs) const
|
|
{
|
|
return VectorR{
|
|
(*this)[1]*rhs[2] - (*this)[2]*rhs[1],
|
|
(*this)[2]*rhs[0] - (*this)[0]*rhs[2],
|
|
(*this)[0]*rhs[1] - (*this)[1]*rhs[0],
|
|
T{0}};
|
|
}
|
|
|
|
constexpr T dot_product(const alu::VectorR<T> &rhs) const
|
|
{ return (*this)[0]*rhs[0] + (*this)[1]*rhs[1] + (*this)[2]*rhs[2]; }
|
|
};
|
|
using Vector = VectorR<float>;
|
|
|
|
template<typename T>
|
|
class MatrixR {
|
|
static_assert(std::is_floating_point<T>::value, "Must use floating-point types");
|
|
alignas(16) std::array<T,16> mVals;
|
|
|
|
public:
|
|
constexpr MatrixR() noexcept = default;
|
|
constexpr MatrixR(const MatrixR&) noexcept = default;
|
|
constexpr MatrixR(T aa, T ab, T ac, T ad,
|
|
T ba, T bb, T bc, T bd,
|
|
T ca, T cb, T cc, T cd,
|
|
T da, T db, T dc, T dd) noexcept
|
|
: mVals{{aa,ab,ac,ad, ba,bb,bc,bd, ca,cb,cc,cd, da,db,dc,dd}}
|
|
{ }
|
|
|
|
constexpr MatrixR& operator=(const MatrixR&) noexcept = default;
|
|
|
|
auto operator[](size_t idx) noexcept { return al::span<T,4>{&mVals[idx*4], 4}; }
|
|
constexpr auto operator[](size_t idx) const noexcept
|
|
{ return al::span<const T,4>{&mVals[idx*4], 4}; }
|
|
|
|
static constexpr MatrixR Identity() noexcept
|
|
{
|
|
return MatrixR{
|
|
T{1}, T{0}, T{0}, T{0},
|
|
T{0}, T{1}, T{0}, T{0},
|
|
T{0}, T{0}, T{1}, T{0},
|
|
T{0}, T{0}, T{0}, T{1}};
|
|
}
|
|
};
|
|
using Matrix = MatrixR<float>;
|
|
|
|
template<typename T>
|
|
inline VectorR<T> operator*(const MatrixR<T> &mtx, const VectorR<T> &vec) noexcept
|
|
{
|
|
return VectorR<T>{
|
|
vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
|
|
vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
|
|
vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
|
|
vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]};
|
|
}
|
|
|
|
template<typename U, typename T>
|
|
inline VectorR<U> cast_to(const VectorR<T> &vec) noexcept
|
|
{
|
|
return VectorR<U>{static_cast<U>(vec[0]), static_cast<U>(vec[1]),
|
|
static_cast<U>(vec[2]), static_cast<U>(vec[3])};
|
|
}
|
|
|
|
} // namespace alu
|
|
|
|
#endif /* COMMON_VECMAT_H */
|