openal-soft/Alc/effects/pshifter.cpp
2018-11-17 04:14:57 -08:00

433 lines
15 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <cmath>
#include <cstdlib>
#include <complex>
#include <algorithm>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "filters/defs.h"
#include "alcomplex.h"
namespace {
using complex_d = std::complex<double>;
#define STFT_SIZE 1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP (1<<2)
#define STFT_STEP (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
inline int double2int(double d)
{
#if ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
!defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
ALint sign, shift;
ALint64 mant;
union {
ALdouble d;
ALint64 i64;
} conv;
conv.d = d;
sign = (conv.i64>>63) | 1;
shift = ((conv.i64>>52)&0x7ff) - (1023+52);
/* Over/underflow */
if(UNLIKELY(shift >= 63 || shift < -52))
return 0;
mant = (conv.i64&I64(0xfffffffffffff)) | I64(0x10000000000000);
if(LIKELY(shift < 0))
return (ALint)(mant >> -shift) * sign;
return (ALint)(mant << shift) * sign;
#else
return (ALint)d;
#endif
}
/* Define a Hann window, used to filter the STFT input and output. */
/* Making this constexpr seems to require C++14. */
std::array<ALdouble,STFT_SIZE> InitHannWindow(void)
{
std::array<ALdouble,STFT_SIZE> ret;
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
for(ALsizei i{0};i < STFT_SIZE>>1;i++)
{
ALdouble val = std::sin(M_PI * (ALdouble)i / (ALdouble)(STFT_SIZE-1));
ret[i] = ret[STFT_SIZE-1-i] = val * val;
}
return ret;
}
alignas(16) const std::array<ALdouble,STFT_SIZE> HannWindow = InitHannWindow();
struct ALphasor {
ALdouble Amplitude;
ALdouble Phase;
};
struct ALfrequencyDomain {
ALdouble Amplitude;
ALdouble Frequency;
};
/* Converts complex to ALphasor */
inline ALphasor rect2polar(const complex_d &number)
{
ALphasor polar;
polar.Amplitude = std::abs(number);
polar.Phase = std::arg(number);
return polar;
}
/* Converts ALphasor to complex */
inline complex_d polar2rect(const ALphasor &number)
{ return std::polar<double>(number.Amplitude, number.Phase); }
struct ALpshifterState final : public ALeffectState {
/* Effect parameters */
ALsizei count;
ALsizei PitchShiftI;
ALfloat PitchShift;
ALfloat FreqPerBin;
/*Effects buffers*/
ALfloat InFIFO[STFT_SIZE];
ALfloat OutFIFO[STFT_STEP];
ALdouble LastPhase[STFT_HALF_SIZE+1];
ALdouble SumPhase[STFT_HALF_SIZE+1];
ALdouble OutputAccum[STFT_SIZE];
complex_d FFTbuffer[STFT_SIZE];
ALfrequencyDomain Analysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain Syntesis_buffer[STFT_HALF_SIZE+1];
alignas(16) ALfloat BufferOut[BUFFERSIZE];
/* Effect gains for each output channel */
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
};
static ALvoid ALpshifterState_Destruct(ALpshifterState *state);
static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device);
static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALpshifterState)
DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState);
void ALpshifterState_Construct(ALpshifterState *state)
{
new (state) ALpshifterState{};
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALpshifterState, ALeffectState, state);
}
ALvoid ALpshifterState_Destruct(ALpshifterState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
state->~ALpshifterState();
}
ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device)
{
/* (Re-)initializing parameters and clear the buffers. */
state->count = FIFO_LATENCY;
state->PitchShiftI = FRACTIONONE;
state->PitchShift = 1.0f;
state->FreqPerBin = device->Frequency / (ALfloat)STFT_SIZE;
std::fill(std::begin(state->InFIFO), std::end(state->InFIFO), 0.0f);
std::fill(std::begin(state->OutFIFO), std::end(state->OutFIFO), 0.0f);
std::fill(std::begin(state->LastPhase), std::end(state->LastPhase), 0.0);
std::fill(std::begin(state->SumPhase), std::end(state->SumPhase), 0.0);
std::fill(std::begin(state->OutputAccum), std::end(state->OutputAccum), 0.0);
std::fill(std::begin(state->FFTbuffer), std::end(state->FFTbuffer), complex_d{});
std::fill(std::begin(state->Analysis_buffer), std::end(state->Analysis_buffer), ALfrequencyDomain{});
std::fill(std::begin(state->Syntesis_buffer), std::end(state->Syntesis_buffer), ALfrequencyDomain{});
std::fill(std::begin(state->CurrentGains), std::end(state->CurrentGains), 0.0f);
std::fill(std::begin(state->TargetGains), std::end(state->TargetGains), 0.0f);
return AL_TRUE;
}
ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
{
const ALCdevice *device = context->Device;
ALfloat coeffs[MAX_AMBI_COEFFS];
float pitch;
pitch = std::pow(2.0f,
(ALfloat)(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
);
state->PitchShiftI = fastf2i(pitch*FRACTIONONE);
state->PitchShift = state->PitchShiftI * (1.0f/FRACTIONONE);
CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs);
ComputePanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains);
}
ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
/* Pitch shifter engine based on the work of Stephan Bernsee.
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
static constexpr ALdouble expected{M_PI*2.0 / OVERSAMP};
const ALdouble freq_per_bin{state->FreqPerBin};
ALfloat *RESTRICT bufferOut{state->BufferOut};
ALsizei count{state->count};
for(ALsizei i{0};i < SamplesToDo;)
{
do {
/* Fill FIFO buffer with samples data */
state->InFIFO[count] = SamplesIn[0][i];
bufferOut[i] = state->OutFIFO[count - FIFO_LATENCY];
count++;
} while(++i < SamplesToDo && count < STFT_SIZE);
/* Check whether FIFO buffer is filled */
if(count < STFT_SIZE) break;
count = FIFO_LATENCY;
/* Real signal windowing and store in FFTbuffer */
for(ALsizei k{0};k < STFT_SIZE;k++)
{
state->FFTbuffer[k].real(state->InFIFO[k] * HannWindow[k]);
state->FFTbuffer[k].imag(0.0);
}
/* ANALYSIS */
/* Apply FFT to FFTbuffer data */
complex_fft(state->FFTbuffer, STFT_SIZE, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
/* Compute amplitude and phase */
ALphasor component{rect2polar(state->FFTbuffer[k])};
/* Compute phase difference and subtract expected phase difference */
double tmp{(component.Phase - state->LastPhase[k]) - k*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / M_PI)};
tmp -= M_PI * (qpd + (qpd%2));
/* Get deviation from bin frequency from the +/- Pi interval */
tmp /= expected;
/* Compute the k-th partials' true frequency, twice the amplitude
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
state->Analysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
state->Analysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
/* Store actual phase[k] for the calculations in the next frame*/
state->LastPhase[k] = component.Phase;
}
/* PROCESSING */
/* pitch shifting */
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
state->Syntesis_buffer[k].Amplitude = 0.0;
state->Syntesis_buffer[k].Frequency = 0.0;
}
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
ALsizei j{(k*state->PitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude;
state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency *
state->PitchShift;
}
/* SYNTHESIS */
/* Synthesis the processing data */
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
ALphasor component;
ALdouble tmp;
/* Compute bin deviation from scaled freq */
tmp = state->Syntesis_buffer[k].Frequency/freq_per_bin - k;
/* Calculate actual delta phase and accumulate it to get bin phase */
state->SumPhase[k] += (k + tmp) * expected;
component.Amplitude = state->Syntesis_buffer[k].Amplitude;
component.Phase = state->SumPhase[k];
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
state->FFTbuffer[k] = polar2rect(component);
}
/* zero negative frequencies for recontruct a real signal */
for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
state->FFTbuffer[k] = complex_d{};
/* Apply iFFT to buffer data */
complex_fft(state->FFTbuffer, STFT_SIZE, 1.0);
/* Windowing and add to output */
for(ALsizei k{0};k < STFT_SIZE;k++)
state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].real() /
(0.5 * STFT_HALF_SIZE * OVERSAMP);
/* Shift accumulator, input & output FIFO */
ALsizei j, k;
for(k = 0;k < STFT_STEP;k++) state->OutFIFO[k] = (ALfloat)state->OutputAccum[k];
for(j = 0;k < STFT_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k];
for(;j < STFT_SIZE;j++) state->OutputAccum[j] = 0.0;
for(k = 0;k < FIFO_LATENCY;k++)
state->InFIFO[k] = state->InFIFO[k+STFT_STEP];
}
state->count = count;
/* Now, mix the processed sound data to the output. */
MixSamples(bufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains,
maxi(SamplesToDo, 512), 0, SamplesToDo);
}
} // namespace
struct PshifterStateFactory final : public EffectStateFactory {
PshifterStateFactory() noexcept;
};
static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory))
{
ALpshifterState *state;
NEW_OBJ0(state, ALpshifterState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory);
PshifterStateFactory::PshifterStateFactory() noexcept
: EffectStateFactory{GET_VTABLE2(PshifterStateFactory, EffectStateFactory)}
{
}
EffectStateFactory *PshifterStateFactory_getFactory(void)
{
static PshifterStateFactory PshifterFactory{};
return STATIC_CAST(EffectStateFactory, &PshifterFactory);
}
void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val))
{
alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param );
}
void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals))
{
alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param );
}
void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
props->Pshifter.CoarseTune = val;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
props->Pshifter.FineTune = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALpshifter_setParami(effect, context, param, vals[0]);
}
void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
*val = (ALint)props->Pshifter.CoarseTune;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
*val = (ALint)props->Pshifter.FineTune;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALpshifter_getParami(effect, context, param, vals);
}
void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val))
{
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param);
}
void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals))
{
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param);
}
DEFINE_ALEFFECT_VTABLE(ALpshifter);